⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sha2.c

📁 log4cxx 0.10 unix下编译包
💻 C
📖 第 1 页 / 共 3 页
字号:
/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements.  See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License.  You may obtain a copy of the License at * *     http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. *//* * FILE:        sha2.c * AUTHOR:      Aaron D. Gifford <me@aarongifford.com> * * A licence was granted to the ASF by Aaron on 4 November 2003. */#include <string.h>     /* memcpy()/memset() or bcopy()/bzero() */#include <assert.h>     /* assert() */#include "sha2.h"/* * ASSERT NOTE: * Some sanity checking code is included using assert().  On my FreeBSD * system, this additional code can be removed by compiling with NDEBUG * defined.  Check your own systems manpage on assert() to see how to * compile WITHOUT the sanity checking code on your system. * * UNROLLED TRANSFORM LOOP NOTE: * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform * loop version for the hash transform rounds (defined using macros * later in this file).  Either define on the command line, for example: * *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c * * or define below: * *   #define SHA2_UNROLL_TRANSFORM * *//*** SHA-256/384/512 Machine Architecture Definitions *****************/typedef apr_byte_t   sha2_byte;         /* Exactly 1 byte */typedef apr_uint32_t sha2_word32;       /* Exactly 4 bytes */typedef apr_uint64_t sha2_word64;       /* Exactly 8 bytes *//*** SHA-256/384/512 Various Length Definitions ***********************//* NOTE: Most of these are in sha2.h */#define SHA256_SHORT_BLOCK_LENGTH       (SHA256_BLOCK_LENGTH - 8)#define SHA384_SHORT_BLOCK_LENGTH       (SHA384_BLOCK_LENGTH - 16)#define SHA512_SHORT_BLOCK_LENGTH       (SHA512_BLOCK_LENGTH - 16)/*** ENDIAN REVERSAL MACROS *******************************************/#if !APR_IS_BIGENDIAN#define REVERSE32(w,x)  { \        sha2_word32 tmp = (w); \        tmp = (tmp >> 16) | (tmp << 16); \        (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \}#define REVERSE64(w,x)  { \        sha2_word64 tmp = (w); \        tmp = (tmp >> 32) | (tmp << 32); \        tmp = ((tmp & APR_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \              ((tmp & APR_UINT64_C(0x00ff00ff00ff00ff)) << 8); \        (x) = ((tmp & APR_UINT64_C(0xffff0000ffff0000)) >> 16) | \              ((tmp & APR_UINT64_C(0x0000ffff0000ffff)) << 16); \}#endif /* !APR_IS_BIGENDIAN *//* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */#define ADDINC128(w,n)  { \        (w)[0] += (sha2_word64)(n); \        if ((w)[0] < (n)) { \                (w)[1]++; \        } \}/* * Macros for copying blocks of memory and for zeroing out ranges * of memory.  Using these macros makes it easy to switch from * using memset()/memcpy() and using bzero()/bcopy(). * * Please define either SHA2_USE_MEMSET_MEMCPY or define * SHA2_USE_BZERO_BCOPY depending on which function set you * choose to use: */#if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)/* Default to memset()/memcpy() if no option is specified */#define SHA2_USE_MEMSET_MEMCPY  1#endif#if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)/* Abort with an error if BOTH options are defined */#error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!#endif#ifdef SHA2_USE_MEMSET_MEMCPY#define MEMSET_BZERO(p,l)       memset((p), 0, (l))#define MEMCPY_BCOPY(d,s,l)     memcpy((d), (s), (l))#endif#ifdef SHA2_USE_BZERO_BCOPY#define MEMSET_BZERO(p,l)       bzero((p), (l))#define MEMCPY_BCOPY(d,s,l)     bcopy((s), (d), (l))#endif/*** THE SIX LOGICAL FUNCTIONS ****************************************//* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and *   S is a ROTATION) because the SHA-256/384/512 description document *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this *   same "backwards" definition. *//* Shift-right (used in SHA-256, SHA-384, and SHA-512): */#define R(b,x)          ((x) >> (b))/* 32-bit Rotate-right (used in SHA-256): */#define S32(b,x)        (((x) >> (b)) | ((x) << (32 - (b))))/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */#define S64(b,x)        (((x) >> (b)) | ((x) << (64 - (b))))/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */#define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))#define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))/* Four of six logical functions used in SHA-256: */#define Sigma0_256(x)   (S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))#define Sigma1_256(x)   (S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))#define sigma0_256(x)   (S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))#define sigma1_256(x)   (S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))/* Four of six logical functions used in SHA-384 and SHA-512: */#define Sigma0_512(x)   (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))#define Sigma1_512(x)   (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))#define sigma0_512(x)   (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))#define sigma1_512(x)   (S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))/*** INTERNAL FUNCTION PROTOTYPES *************************************//* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */void apr__SHA512_Last(SHA512_CTX*);void apr__SHA256_Transform(SHA256_CTX*, const sha2_word32*);void apr__SHA512_Transform(SHA512_CTX*, const sha2_word64*);/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************//* Hash constant words K for SHA-256: */const static sha2_word32 K256[64] = {        0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,        0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,        0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,        0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,        0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,        0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,        0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,        0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,        0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,        0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,        0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,        0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,        0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,        0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,        0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,        0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL};/* Initial hash value H for SHA-256: */const static sha2_word32 sha256_initial_hash_value[8] = {        0x6a09e667UL,        0xbb67ae85UL,        0x3c6ef372UL,        0xa54ff53aUL,        0x510e527fUL,        0x9b05688cUL,        0x1f83d9abUL,        0x5be0cd19UL};/* Hash constant words K for SHA-384 and SHA-512: */const static sha2_word64 K512[80] = {    APR_UINT64_C(0x428a2f98d728ae22), APR_UINT64_C(0x7137449123ef65cd),    APR_UINT64_C(0xb5c0fbcfec4d3b2f), APR_UINT64_C(0xe9b5dba58189dbbc),    APR_UINT64_C(0x3956c25bf348b538), APR_UINT64_C(0x59f111f1b605d019),    APR_UINT64_C(0x923f82a4af194f9b), APR_UINT64_C(0xab1c5ed5da6d8118),    APR_UINT64_C(0xd807aa98a3030242), APR_UINT64_C(0x12835b0145706fbe),    APR_UINT64_C(0x243185be4ee4b28c), APR_UINT64_C(0x550c7dc3d5ffb4e2),    APR_UINT64_C(0x72be5d74f27b896f), APR_UINT64_C(0x80deb1fe3b1696b1),    APR_UINT64_C(0x9bdc06a725c71235), APR_UINT64_C(0xc19bf174cf692694),    APR_UINT64_C(0xe49b69c19ef14ad2), APR_UINT64_C(0xefbe4786384f25e3),    APR_UINT64_C(0x0fc19dc68b8cd5b5), APR_UINT64_C(0x240ca1cc77ac9c65),    APR_UINT64_C(0x2de92c6f592b0275), APR_UINT64_C(0x4a7484aa6ea6e483),    APR_UINT64_C(0x5cb0a9dcbd41fbd4), APR_UINT64_C(0x76f988da831153b5),    APR_UINT64_C(0x983e5152ee66dfab), APR_UINT64_C(0xa831c66d2db43210),    APR_UINT64_C(0xb00327c898fb213f), APR_UINT64_C(0xbf597fc7beef0ee4),    APR_UINT64_C(0xc6e00bf33da88fc2), APR_UINT64_C(0xd5a79147930aa725),    APR_UINT64_C(0x06ca6351e003826f), APR_UINT64_C(0x142929670a0e6e70),    APR_UINT64_C(0x27b70a8546d22ffc), APR_UINT64_C(0x2e1b21385c26c926),    APR_UINT64_C(0x4d2c6dfc5ac42aed), APR_UINT64_C(0x53380d139d95b3df),    APR_UINT64_C(0x650a73548baf63de), APR_UINT64_C(0x766a0abb3c77b2a8),    APR_UINT64_C(0x81c2c92e47edaee6), APR_UINT64_C(0x92722c851482353b),    APR_UINT64_C(0xa2bfe8a14cf10364), APR_UINT64_C(0xa81a664bbc423001),    APR_UINT64_C(0xc24b8b70d0f89791), APR_UINT64_C(0xc76c51a30654be30),    APR_UINT64_C(0xd192e819d6ef5218), APR_UINT64_C(0xd69906245565a910),    APR_UINT64_C(0xf40e35855771202a), APR_UINT64_C(0x106aa07032bbd1b8),    APR_UINT64_C(0x19a4c116b8d2d0c8), APR_UINT64_C(0x1e376c085141ab53),    APR_UINT64_C(0x2748774cdf8eeb99), APR_UINT64_C(0x34b0bcb5e19b48a8),    APR_UINT64_C(0x391c0cb3c5c95a63), APR_UINT64_C(0x4ed8aa4ae3418acb),    APR_UINT64_C(0x5b9cca4f7763e373), APR_UINT64_C(0x682e6ff3d6b2b8a3),    APR_UINT64_C(0x748f82ee5defb2fc), APR_UINT64_C(0x78a5636f43172f60),    APR_UINT64_C(0x84c87814a1f0ab72), APR_UINT64_C(0x8cc702081a6439ec),    APR_UINT64_C(0x90befffa23631e28), APR_UINT64_C(0xa4506cebde82bde9),    APR_UINT64_C(0xbef9a3f7b2c67915), APR_UINT64_C(0xc67178f2e372532b),    APR_UINT64_C(0xca273eceea26619c), APR_UINT64_C(0xd186b8c721c0c207),    APR_UINT64_C(0xeada7dd6cde0eb1e), APR_UINT64_C(0xf57d4f7fee6ed178),    APR_UINT64_C(0x06f067aa72176fba), APR_UINT64_C(0x0a637dc5a2c898a6),    APR_UINT64_C(0x113f9804bef90dae), APR_UINT64_C(0x1b710b35131c471b),    APR_UINT64_C(0x28db77f523047d84), APR_UINT64_C(0x32caab7b40c72493),    APR_UINT64_C(0x3c9ebe0a15c9bebc), APR_UINT64_C(0x431d67c49c100d4c),    APR_UINT64_C(0x4cc5d4becb3e42b6), APR_UINT64_C(0x597f299cfc657e2a),    APR_UINT64_C(0x5fcb6fab3ad6faec), APR_UINT64_C(0x6c44198c4a475817)};/* Initial hash value H for SHA-384 */const static sha2_word64 sha384_initial_hash_value[8] = {    APR_UINT64_C(0xcbbb9d5dc1059ed8),    APR_UINT64_C(0x629a292a367cd507),    APR_UINT64_C(0x9159015a3070dd17),    APR_UINT64_C(0x152fecd8f70e5939),    APR_UINT64_C(0x67332667ffc00b31),    APR_UINT64_C(0x8eb44a8768581511),    APR_UINT64_C(0xdb0c2e0d64f98fa7),    APR_UINT64_C(0x47b5481dbefa4fa4)};/* Initial hash value H for SHA-512 */const static sha2_word64 sha512_initial_hash_value[8] = {    APR_UINT64_C(0x6a09e667f3bcc908),    APR_UINT64_C(0xbb67ae8584caa73b),    APR_UINT64_C(0x3c6ef372fe94f82b),    APR_UINT64_C(0xa54ff53a5f1d36f1),    APR_UINT64_C(0x510e527fade682d1),    APR_UINT64_C(0x9b05688c2b3e6c1f),    APR_UINT64_C(0x1f83d9abfb41bd6b),    APR_UINT64_C(0x5be0cd19137e2179)};/* * Constant used by SHA256/384/512_End() functions for converting the * digest to a readable hexadecimal character string: */static const char *sha2_hex_digits = "0123456789abcdef";/*** SHA-256: *********************************************************/void apr__SHA256_Init(SHA256_CTX* context) {        if (context == (SHA256_CTX*)0) {                return;        }        MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);        MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);        context->bitcount = 0;}#ifdef SHA2_UNROLL_TRANSFORM/* Unrolled SHA-256 round macros: */#if !APR_IS_BIGENDIAN#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \        REVERSE32(*data++, W256[j]); \        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \             K256[j] + W256[j]; \        (d) += T1; \        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \        j++#else /* APR_IS_BIGENDIAN */#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h)       \        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \             K256[j] + (W256[j] = *data++); \        (d) += T1; \        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \        j++#endif /* APR_IS_BIGENDIAN */#define ROUND256(a,b,c,d,e,f,g,h)       \        s0 = W256[(j+1)&0x0f]; \        s0 = sigma0_256(s0); \        s1 = W256[(j+14)&0x0f]; \        s1 = sigma1_256(s1); \        T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \             (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \        (d) += T1; \        (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \        j++void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {        sha2_word32     a, b, c, d, e, f, g, h, s0, s1;        sha2_word32     T1, *W256;        int             j;        W256 = (sha2_word32*)context->buffer;        /* Initialize registers with the prev. intermediate value */        a = context->state[0];        b = context->state[1];        c = context->state[2];        d = context->state[3];        e = context->state[4];        f = context->state[5];        g = context->state[6];        h = context->state[7];        j = 0;        do {                /* Rounds 0 to 15 (unrolled): */                ROUND256_0_TO_15(a,b,c,d,e,f,g,h);                ROUND256_0_TO_15(h,a,b,c,d,e,f,g);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -