📄 jfdctint.c
字号:
/*
* jfdctint.c
*
* Copyright (C) 1991-1996, Thomas G. Lane.
* Modification developed 2003-2009 by Guido Vollbeding.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains a slow-but-accurate integer implementation of the
* forward DCT (Discrete Cosine Transform).
*
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
* on each column. Direct algorithms are also available, but they are
* much more complex and seem not to be any faster when reduced to code.
*
* This implementation is based on an algorithm described in
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
* The primary algorithm described there uses 11 multiplies and 29 adds.
* We use their alternate method with 12 multiplies and 32 adds.
* The advantage of this method is that no data path contains more than one
* multiplication; this allows a very simple and accurate implementation in
* scaled fixed-point arithmetic, with a minimal number of shifts.
*
* We also provide FDCT routines with various input sample block sizes for
* direct resolution reduction or enlargement and for direct resolving the
* common 2x1 and 1x2 subsampling cases without additional resampling: NxN
* (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block.
*
* For N<8 we fill the remaining block coefficients with zero.
* For N>8 we apply a partial N-point FDCT on the input samples, computing
* just the lower 8 frequency coefficients and discarding the rest.
*
* We must scale the output coefficients of the N-point FDCT appropriately
* to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling
* is folded into the constant multipliers (pass 2) and/or final/initial
* shifting.
*
* CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
* since there would be too many additional constants to pre-calculate.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
#ifdef DCT_ISLOW_SUPPORTED
/*
* This module is specialized to the case DCTSIZE = 8.
*/
#if DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
#endif
/*
* The poop on this scaling stuff is as follows:
*
* Each 1-D DCT step produces outputs which are a factor of sqrt(N)
* larger than the true DCT outputs. The final outputs are therefore
* a factor of N larger than desired; since N=8 this can be cured by
* a simple right shift at the end of the algorithm. The advantage of
* this arrangement is that we save two multiplications per 1-D DCT,
* because the y0 and y4 outputs need not be divided by sqrt(N).
* In the IJG code, this factor of 8 is removed by the quantization step
* (in jcdctmgr.c), NOT in this module.
*
* We have to do addition and subtraction of the integer inputs, which
* is no problem, and multiplication by fractional constants, which is
* a problem to do in integer arithmetic. We multiply all the constants
* by CONST_SCALE and convert them to integer constants (thus retaining
* CONST_BITS bits of precision in the constants). After doing a
* multiplication we have to divide the product by CONST_SCALE, with proper
* rounding, to produce the correct output. This division can be done
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
* as long as possible so that partial sums can be added together with
* full fractional precision.
*
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
* they are represented to better-than-integral precision. These outputs
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
* with the recommended scaling. (For 12-bit sample data, the intermediate
* array is INT32 anyway.)
*
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
* shows that the values given below are the most effective.
*/
#if BITS_IN_JSAMPLE == 8
#define CONST_BITS 13
#define PASS1_BITS 2
#else
#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
#endif
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
* causing a lot of useless floating-point operations at run time.
* To get around this we use the following pre-calculated constants.
* If you change CONST_BITS you may want to add appropriate values.
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
*/
#if CONST_BITS == 13
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
#else
#define FIX_0_298631336 FIX(0.298631336)
#define FIX_0_390180644 FIX(0.390180644)
#define FIX_0_541196100 FIX(0.541196100)
#define FIX_0_765366865 FIX(0.765366865)
#define FIX_0_899976223 FIX(0.899976223)
#define FIX_1_175875602 FIX(1.175875602)
#define FIX_1_501321110 FIX(1.501321110)
#define FIX_1_847759065 FIX(1.847759065)
#define FIX_1_961570560 FIX(1.961570560)
#define FIX_2_053119869 FIX(2.053119869)
#define FIX_2_562915447 FIX(2.562915447)
#define FIX_3_072711026 FIX(3.072711026)
#endif
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
* For 8-bit samples with the recommended scaling, all the variable
* and constant values involved are no more than 16 bits wide, so a
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
* For 12-bit samples, a full 32-bit multiplication will be needed.
*/
#if BITS_IN_JSAMPLE == 8
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else
#define MULTIPLY(var,const) ((var) * (const))
#endif
/*
* Perform the forward DCT on one block of samples.
*/
GLOBAL(void)
jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12, tmp13;
INT32 z1;
DCTELEM *dataptr;
JSAMPROW elemptr;
int ctr;
SHIFT_TEMPS
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
dataptr = data;
for (ctr = 0; ctr < DCTSIZE; ctr++) {
elemptr = sample_data[ctr] + start_col;
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
tmp10 = tmp0 + tmp3;
tmp12 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp13 = tmp1 - tmp2;
tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
/* Apply unsigned->signed conversion */
dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
CONST_BITS-PASS1_BITS);
dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
CONST_BITS-PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents sqrt(2) * cos(K*pi/16).
* i0..i3 in the paper are tmp0..tmp3 here.
*/
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp0 + tmp2;
tmp13 = tmp1 + tmp3;
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS-PASS1_BITS-1);
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
tmp12 += z1;
tmp13 += z1;
dataptr[1] = (DCTELEM)
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM)
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM)
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
dataptr[7] = (DCTELEM)
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
dataptr += DCTSIZE; /* advance pointer to next row */
}
/* Pass 2: process columns.
* We remove the PASS1_BITS scaling, but leave the results scaled up
* by an overall factor of 8.
*/
dataptr = data;
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
/* Even part per LL&M figure 1 --- note that published figure is faulty;
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
*/
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
/* Add fudge factor here for final descale. */
tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
tmp12 = tmp0 - tmp3;
tmp11 = tmp1 + tmp2;
tmp13 = tmp1 - tmp2;
tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS+PASS1_BITS-1);
dataptr[DCTSIZE*2] = (DCTELEM)
RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*6] = (DCTELEM)
RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
/* Odd part per figure 8 --- note paper omits factor of sqrt(2).
* cK represents sqrt(2) * cos(K*pi/16).
* i0..i3 in the paper are tmp0..tmp3 here.
*/
tmp10 = tmp0 + tmp3;
tmp11 = tmp1 + tmp2;
tmp12 = tmp0 + tmp2;
tmp13 = tmp1 + tmp3;
z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */
/* Add fudge factor here for final descale. */
z1 += ONE << (CONST_BITS+PASS1_BITS-1);
tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */
tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */
tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */
tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */
tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */
tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */
tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */
tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */
tmp12 += z1;
tmp13 += z1;
dataptr[DCTSIZE*1] = (DCTELEM)
RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*3] = (DCTELEM)
RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*5] = (DCTELEM)
RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
dataptr[DCTSIZE*7] = (DCTELEM)
RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
dataptr++; /* advance pointer to next column */
}
}
#ifdef DCT_SCALING_SUPPORTED
/*
* Perform the forward DCT on a 7x7 sample block.
*/
GLOBAL(void)
jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
{
INT32 tmp0, tmp1, tmp2, tmp3;
INT32 tmp10, tmp11, tmp12;
INT32 z1, z2, z3;
DCTELEM *dataptr;
JSAMPROW elemptr;
int ctr;
SHIFT_TEMPS
/* Pre-zero output coefficient block. */
MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
/* Pass 1: process rows. */
/* Note results are scaled up by sqrt(8) compared to a true DCT; */
/* furthermore, we scale the results by 2**PASS1_BITS. */
/* cK represents sqrt(2) * cos(K*pi/14). */
dataptr = data;
for (ctr = 0; ctr < 7; ctr++) {
elemptr = sample_data[ctr] + start_col;
/* Even part */
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -