⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 qrd_lsl.m

📁 数字信号处理中自适应滤波的实现
💻 M
字号:
function [Wo, ee, gamma] = qrd_lsl(u, d, M, verbose, lambda, delta)% function [Wo, ee, gamma] = qrd_lsl(u, d, M, verbose, lambda, delta)%% qrd_lsl.m - apply the standard QR-decomposition based LSL algorithm% using angle-normalized error to predict/estimate complex-valued processes% written for MATLAB 4.0%% For efficiency, the index shifting functions should be replaced with% their corresponding macro definitions in ms.m and ns.m.% their corresponding macro definitions in ms.m and ns.m.%% Reference: Ch.15 of Haykin, _Adaptive Filter Theory_, 3rd ed., 1991%% Input parameters:%       u       : vector of inputs%       d       : vector of desired outputs%       M       : final order of predictor%       verbose : set to 1 for interactive processing%       lambda  : the initial value of the forgetting factor%       delta   : the initial value for the prediction matrices%% Output parameters:%       Wo      : row-wise matrix of Hermitian transposed weights%                 at each iteration%       ee      : row vector of a posteriori prediction errors Y - xp%                 for final prediction order M+1%       gamma   : row vector of conversion factors for final%                 prediction order M+1%       gamma   : row vector of conversion factors for final%                 prediction order M+1%% Copyright (c) 1994-2001, Paul Yee.% Nout = size(Xi, 2);Nout = 1;% length of maximum number of timesteps that can be predictedN = min(length(u),length(d));Wo=[];% prediction initializationF = zeros(ms(M),ns(N));F(ms(0):ms(M),ns(0)) = delta * ones(M+1,1);B = zeros(ms(M),ns(N));B(ms(0):ms(M),ns(-1)) = delta * ones(M+1,1);B(ms(M),ns(0)) = delta;cb = zeros(ms(M),ns(N));sb = cb;cf = cb;sf = cb;e = zeros(ms(M+1),ns(N));ee = e;pfc = zeros(ms(M-1),ns(N));pbc = pfc;pc = pfc;pfc(ms(0):ms(M-1),ns(0)) = zeros(M, 1);pbc(ms(0):ms(M-1),ns(0)) = zeros(M, 1);pc(ms(1):ms(M),ns(0)) = zeros(M, 1);gamma_root = zeros(ms(M+1),ns(N));gamma_root(ms(0),ns(1):ns(N)) = ones(1, N);lambda_root = sqrt(lambda);% set size of reflection coefficientskappa_f = zeros(ms(M),ns(N));kappa_b = zeros(ms(M),ns(N));kappa = zeros(ms(M),ns(N));for n = 1:N,  % data initialization  ef(ms(0),ns(n)) = u(n);  eb(ms(0),ns(n)) = u(n);  e(ms(0),ns(n)) = d(n);  gamma_root(ms(0),ns(n)) = 1;    for m = 1:M,    % predictions    B(ms(m-1),ns(n-1)) = lambda * B(ms(m-1),ns(n-2)) +...abs(eb(ms(m-1),ns(n-1)))^2;    cb(ms(m-1),ns(n-1)) = lambda_root * sqrt(B(ms(m-1),ns(n-2)) /...B(ms(m-1),ns(n-1)));    sb(ms(m-1),ns(n-1)) = eb(ms(m-1),ns(n-1)) / sqrt(B(ms(m-1),ns(n-1)));    pfc(ms(m-1),ns(n)) = cb(ms(m-1),ns(n-1)) * lambda_root *...pfc(ms(m-1),ns(n-1)) + conj(sb(ms(m-1),ns(n-1))) * ef(ms(m-1),ns(n));    ef(ms(m),ns(n)) = cb(ms(m-1),ns(n-1)) * ef(ms(m-1),ns(n)) -...sb(ms(m-1),ns(n-1)) * lambda_root * pfc(ms(m-1),ns(n-1));    gamma_root(ms(m),ns(n-1)) = cb(ms(m-1),ns(n-1)) *...gamma_root(ms(m-1),ns(n-1));    kappa_f(ms(m),ns(n)) = -conj(pfc(ms(m-1),ns(n))) /...sqrt(B(ms(m-1),ns(n-1)));    F(ms(m-1),ns(n)) = lambda * F(ms(m-1),ns(n-1)) + abs(ef(ms(m-1),ns(n)))^2;    cf(ms(m-1),ns(n)) = lambda_root * sqrt(F(ms(m-1),ns(n-1)) /...F(ms(m-1),ns(n)));    sf(ms(m-1),ns(n)) = ef(ms(m-1),ns(n)) / sqrt(F(ms(m-1),ns(n)));    pbc(ms(m-1),ns(n)) = cf(ms(m-1),ns(n)) * lambda_root * pbc(ms(m-1),ns(n-1))+... sf(ms(m-1),ns(n)) * eb(ms(m-1),ns(n-1));    eb(ms(m),ns(n)) = cf(ms(m-1),ns(n)) * eb(ms(m-1),ns(n-1)) -...sf(ms(m-1),ns(n)) * lambda_root * pbc(ms(m-1),ns(n-1));    kappa_b(ms(m),ns(n)) = -conj(pbc(ms(m-1),ns(n))) / sqrt(F(ms(m-1),ns(n)));  end; % for m  end; % for nfor n = 1:N,    for m = 1:M,          % filtering    pc(ms(m-1),ns(n)) = cb(ms(m-1),ns(n)) * lambda_root * pc(ms(m-1),ns(n-1)) +...conj(sb(ms(m-1),ns(n))) * e(ms(m-1),ns(n));   e(ms(m),ns(n)) = cb(ms(m-1),ns(n)) * e(ms(m-1),ns(n)) - sb(ms(m-1),ns(n)) *...lambda_root * pc(ms(m-1),ns(n-1));    ee(ms(m),ns(n)) = gamma_root(ms(m),ns(n)) * e(ms(m),ns(n));      end; % for m    end; % for nfor n = 1:N,    % handle terminal case m=M separately as in Sayed and Kailath Table 5  B(ms(M),ns(n)) = lambda * B(ms(M),ns(n-1)) + abs(eb(ms(M),ns(n)))^2;  cb(ms(M),ns(n)) = lambda_root * sqrt(B(ms(M),ns(n-1)) / B(ms(M),ns(n)));  sb(ms(M),ns(n)) = eb(ms(M),ns(n)) / sqrt(B(ms(M),ns(n)));  e(ms(M+1),ns(n)) = cb(ms(M),ns(n)) * e(ms(M),ns(n)) - sb(ms(M),ns(n)) *...lambda_root * pc(ms(M),ns(n-1));  pc(ms(M),ns(n)) = cb(ms(M),ns(n)) * lambda_root * pc(ms(M),ns(n-1)) +...conj(sb(ms(M),ns(n))) * e(ms(M),ns(n));  gamma_root(ms(M+1),ns(n)) = cb(ms(M),ns(n)) * gamma_root(ms(M),ns(N));    ee(ms(M+1),ns(n)) = gamma_root(ms(M+1),ns(n)) * e(ms(M+1),ns(n));      for m = 1:M,        B(ms(m-1),ns(N)) = lambda * B(ms(m-1),ns(N-2)) + abs(eb(ms(m-1),ns(N)))^2;        % joint-process regression coefficient    % required to compute weight vector    kappa(ms(m),ns(n)) = conj(pc(ms(m-1),ns(n))) / sqrt(B(ms(m),ns(n))); end; % for m end; % for nan = zeros(M, M+1);cn = an;cn1 = cn;L_M = eye(M+1, M+1);for n = 1:N,    an(1, 1:2) = [1 kappa_f(ms(1),ns(n))];  cn(1, 1:2) = [kappa_b(ms(1),ns(n)) 1];  for m = 2:M,  % compute coefficients of forward and backward prediction-error    % filters for later use in computation of weight vector. Note    % that we propagate an and cn in row vector form.    an(m, 1:(m+1)) = [an(m-1, 1:m) 0] + kappa_f(ms(m),ns(n)) * [0 cn1(m-1,1:m)];    cn(m, 1:(m+1)) = [0 cn1(m-1, 1:m)] + kappa_b(ms(m),ns(n)) * [an(m-1, 1:m) 0];  end; % for m    for m = 2:(M+1),    L_M(m, 1:(m-1)) = conj(cn(m-1, 1:(m-1)));  end; % for m    % note that we store Hermitian-transposed weights  % row-wise in Wo  Wo = [Wo ; kappa(ms(0):ms(M),ns(n))' * L_M]; cn1 = cn;    end; % for n% resize variables before returnWo = Wo(1:(N-1),:)';ee = ee(ms(M),ns(1):ns(N-1));gamma = gamma_root(ms(M),ns(1):ns(N-1)).^2;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -