📄 timer.c
字号:
/*! \file timer.c \brief System Timer function library. *///*****************************************************************************//// File Name : 'timer.c'// Title : System Timer function library// Author : Pascal Stang - Copyright (C) 2000-2002// Created : 11/22/2000// Revised : 07/09/2003// Version : 1.1// Target MCU : Atmel AVR Series// Editor Tabs : 4//// This code is distributed under the GNU Public License// which can be found at http://www.gnu.org/licenses/gpl.txt////*****************************************************************************#ifndef WIN32 #include <avr/io.h> #include <avr/signal.h> #include <avr/interrupt.h> #include <avr/pgmspace.h> #include <avr/sleep.h>#endif#undef TCNT2#include "global.h"#include "timer.h"#include "rprintf.h"// Program ROM constants// the prescale division values stored in order of timer control register index// STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024};// the prescale division values stored in order of timer control register index// STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024};// Global variables// time registersvolatile unsigned long TimerPauseReg;volatile unsigned long Timer0Reg0;volatile unsigned long Timer2Reg0;typedef void (*voidFuncPtr)(void);volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS];// delay for a minimum of <us> microseconds // the time resolution is dependent on the time the loop takes // e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us void delay_us(unsigned short time_us) { unsigned short delay_loops; register unsigned short i; delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty) // one loop takes 5 cpu cycles for (i=0; i < delay_loops; i++) {};}/*void delay_ms(unsigned char time_ms){ unsigned short delay_count = F_CPU / 4000; unsigned short cnt; asm volatile ("\n" "L_dl1%=:\n\t" "mov %A0, %A2\n\t" "mov %B0, %B2\n" "L_dl2%=:\n\t" "sbiw %A0, 1\n\t" "brne L_dl2%=\n\t" "dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt) :"r"(time_ms), "r"((unsigned short) (delay_count)) );}*/void timerInit(void){ u08 intNum; // detach all user functions from interrupts for(intNum=0; intNum<TIMER_NUM_INTERRUPTS; intNum++) timerDetach(intNum); // initialize all timers timer0Init(); timer1Init(); #ifdef TCNT2 // support timer2 only if it exists timer2Init(); #endif // enable interrupts sei();}void timer0Init(){ // initialize timer 0 timer0SetPrescaler( TIMER0PRESCALE ); // set prescaler outb(TCNT0, 0); // reset TCNT0 sbi(TIMSK0, TOIE0); // enable TCNT0 overflow interrupt timer0ClearOverflowCount(); // initialize time registers}void timer1Init(void){ // initialize timer 1 timer1SetPrescaler( TIMER1PRESCALE ); // set prescaler outb(TCNT1H, 0); // reset TCNT1 outb(TCNT1L, 0); sbi(TIMSK1, TOIE1); // enable TCNT1 overflow}#ifdef TCNT2 // support timer2 only if it existsvoid timer2Init(void){ // initialize timer 2 timer2SetPrescaler( TIMER2PRESCALE ); // set prescaler outb(TCNT2, 0); // reset TCNT2 sbi(TIMSK2, TOIE2); // enable TCNT2 overflow timer2ClearOverflowCount(); // initialize time registers}#endifvoid timer0SetPrescaler(u08 prescale){ // set prescaler on timer 0 outb(TCCR0A, (inb(TCCR0A) & ~TIMER_PRESCALE_MASK) | prescale);}void timer1SetPrescaler(u08 prescale){ // set prescaler on timer 1 outb(TCCR1B, (inb(TCCR1B) & ~TIMER_PRESCALE_MASK) | prescale);}#ifdef TCNT2 // support timer2 only if it existsvoid timer2SetPrescaler(u08 prescale){ // set prescaler on timer 2 outb(TCCR2, (inb(TCCR2) & ~TIMER_PRESCALE_MASK) | prescale);}#endifu16 timer0GetPrescaler(void){ // get the current prescaler setting return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR0A) & TIMER_PRESCALE_MASK)));}u16 timer1GetPrescaler(void){ // get the current prescaler setting return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR1B) & TIMER_PRESCALE_MASK)));}#ifdef TCNT2 // support timer2 only if it existsu16 timer2GetPrescaler(void){ //TODO: can we assume for all 3-timer AVR processors, // that timer2 is the RTC timer? // get the current prescaler setting return (pgm_read_word(TimerRTCPrescaleFactor+(inb(TCCR2) & TIMER_PRESCALE_MASK)));}#endifvoid timerAttach(u08 interruptNum, void (*userFunc)(void) ){ // make sure the interrupt number is within bounds if(interruptNum < TIMER_NUM_INTERRUPTS) { // set the interrupt function to run // the supplied user's function TimerIntFunc[interruptNum] = userFunc; }}void timerDetach(u08 interruptNum){ // make sure the interrupt number is within bounds if(interruptNum < TIMER_NUM_INTERRUPTS) { // set the interrupt function to run nothing TimerIntFunc[interruptNum] = 0; }}/*u32 timerMsToTics(u16 ms){ // calculate the prescaler division rate u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0))); // calculate the number of timer tics in x milliseconds return (ms*(F_CPU/(prescaleDiv*256)))/1000;}u16 timerTicsToMs(u32 tics){ // calculate the prescaler division rate u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0))); // calculate the number of milliseconds in x timer tics return (tics*1000*(prescaleDiv*256))/F_CPU;}*/void timerPause(unsigned short pause_ms){ // pauses for exactly <pause_ms> number of milliseconds u08 timerThres; u32 ticRateHz; u32 pause; // capture current pause timer value timerThres = inb(TCNT0); // reset pause timer overflow count TimerPauseReg = 0; // calculate delay for [pause_ms] milliseconds // prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0))) ticRateHz = F_CPU/timer0GetPrescaler(); // precision management // prevent overflow and precision underflow // -could add more conditions to improve accuracy if( ((ticRateHz < 429497) && (pause_ms <= 10000)) ) pause = (pause_ms*ticRateHz)/1000; else pause = pause_ms*(ticRateHz/1000); // loop until time expires while( ((TimerPauseReg<<8) | inb(TCNT0)) < (pause+timerThres) ) { if( TimerPauseReg < (pause>>8)); { // save power by idling the processor set_sleep_mode(SLEEP_MODE_IDLE); sleep_mode(); } } /* old inaccurate code, for reference // calculate delay for [pause_ms] milliseconds u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0))); u32 pause = (pause_ms*(F_CPU/(prescaleDiv*256)))/1000; TimerPauseReg = 0; while(TimerPauseReg < pause); */}void timer0ClearOverflowCount(void){ // clear the timer overflow counter registers Timer0Reg0 = 0; // initialize time registers}long timer0GetOverflowCount(void){ // return the current timer overflow count // (this is since the last timer0ClearOverflowCount() command was called) return Timer0Reg0;}#ifdef TCNT2 // support timer2 only if it existsvoid timer2ClearOverflowCount(void){ // clear the timer overflow counter registers Timer2Reg0 = 0; // initialize time registers}long timer2GetOverflowCount(void){ // return the current timer overflow count // (this is since the last timer2ClearOverflowCount() command was called) return Timer2Reg0;}#endifvoid timer1PWMInit(u08 bitRes){ // configures timer1 for use with PWM output // on OC1A and OC1B pins // enable timer1 as 8,9,10bit PWM if(bitRes == 9) { // 9bit mode sbi(TCCR1A,PWM11); cbi(TCCR1A,PWM10); } else if( bitRes == 10 ) { // 10bit mode sbi(TCCR1A,PWM11); sbi(TCCR1A,PWM10); } else { // default 8bit mode cbi(TCCR1A,PWM11); sbi(TCCR1A,PWM10); } // clear output compare value A outb(OCR1AH, 0); outb(OCR1AL, 0); // clear output compare value B outb(OCR1BH, 0); outb(OCR1BL, 0);}#ifdef WGM10// include support for arbitrary top-count PWM// on new AVR processors that support itvoid timer1PWMInitICR(u16 topcount){ // set PWM mode with ICR top-count cbi(TCCR1A,WGM10); sbi(TCCR1A,WGM11); sbi(TCCR1B,WGM12); sbi(TCCR1B,WGM13); // set top count value ICR1 = topcount; // clear output compare value A OCR1A = 0; // clear output compare value B OCR1B = 0;}#endifvoid timer1PWMOff(void){ // turn off timer1 PWM mode cbi(TCCR1A,PWM11); cbi(TCCR1A,PWM10); // set PWM1A/B (OutputCompare action) to none timer1PWMAOff(); timer1PWMBOff();}void timer1PWMAOn(void){ // turn on channel A (OC1A) PWM output // set OC1A as non-inverted PWM sbi(TCCR1A,COM1A1); cbi(TCCR1A,COM1A0);}void timer1PWMBOn(void){ // turn on channel B (OC1B) PWM output // set OC1B as non-inverted PWM sbi(TCCR1A,COM1B1); cbi(TCCR1A,COM1B0);}void timer1PWMAOff(void){ // turn off channel A (OC1A) PWM output // set OC1A (OutputCompare action) to none cbi(TCCR1A,COM1A1); cbi(TCCR1A,COM1A0);}void timer1PWMBOff(void){ // turn off channel B (OC1B) PWM output // set OC1B (OutputCompare action) to none cbi(TCCR1A,COM1B1); cbi(TCCR1A,COM1B0);}void timer1PWMASet(u16 pwmDuty){ // set PWM (output compare) duty for channel A // this PWM output is generated on OC1A pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM //outp( (pwmDuty>>8), OCR1AH); // set the high 8bits of OCR1A //outp( (pwmDuty&0x00FF), OCR1AL); // set the low 8bits of OCR1A OCR1A = pwmDuty;}void timer1PWMBSet(u16 pwmDuty){ // set PWM (output compare) duty for channel B // this PWM output is generated on OC1B pin // NOTE: pwmDuty should be in the range 0-255 for 8bit PWM // pwmDuty should be in the range 0-511 for 9bit PWM // pwmDuty should be in the range 0-1023 for 10bit PWM //outp( (pwmDuty>>8), OCR1BH); // set the high 8bits of OCR1B //outp( (pwmDuty&0x00FF), OCR1BL); // set the low 8bits of OCR1B OCR1B = pwmDuty;}//! Interrupt handler for tcnt0 overflow interruptTIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0){ Timer0Reg0++; // increment low-order counter // increment pause counter TimerPauseReg++; // if a user function is defined, execute it too if(TimerIntFunc[TIMER0OVERFLOW_INT]) TimerIntFunc[TIMER0OVERFLOW_INT]();}//! Interrupt handler for tcnt1 overflow interruptTIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1){ // if a user function is defined, execute it if(TimerIntFunc[TIMER1OVERFLOW_INT]) TimerIntFunc[TIMER1OVERFLOW_INT]();}#ifdef TCNT2 // support timer2 only if it exists//! Interrupt handler for tcnt2 overflow interruptTIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2){ Timer2Reg0++; // increment low-order counter // if a user function is defined, execute it if(TimerIntFunc[TIMER2OVERFLOW_INT]) TimerIntFunc[TIMER2OVERFLOW_INT]();}#endif#ifdef OCR0// include support for Output Compare 0 for new AVR processors that support it//! Interrupt handler for OutputCompare0 match (OC0) interruptTIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0){ // if a user function is defined, execute it if(TimerIntFunc[TIMER0OUTCOMPARE_INT]) TimerIntFunc[TIMER0OUTCOMPARE_INT]();}#endif//! Interrupt handler for CutputCompare1A match (OC1A) interruptTIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A){ // if a user function is defined, execute it if(TimerIntFunc[TIMER1OUTCOMPAREA_INT]) TimerIntFunc[TIMER1OUTCOMPAREA_INT]();}//! Interrupt handler for OutputCompare1B match (OC1B) interruptTIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B){ // if a user function is defined, execute it if(TimerIntFunc[TIMER1OUTCOMPAREB_INT]) TimerIntFunc[TIMER1OUTCOMPAREB_INT]();}//! Interrupt handler for InputCapture1 (IC1) interruptTIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1){ // if a user function is defined, execute it if(TimerIntFunc[TIMER1INPUTCAPTURE_INT]) TimerIntFunc[TIMER1INPUTCAPTURE_INT]();}//! Interrupt handler for OutputCompare2 match (OC2) interruptTIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2){ // if a user function is defined, execute it if(TimerIntFunc[TIMER2OUTCOMPARE_INT]) TimerIntFunc[TIMER2OUTCOMPARE_INT]();}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -