⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 timer.c

📁 GPS application software. DOC and Source Code
💻 C
字号:
/*! \file timer.c \brief System Timer function library. *///*****************************************************************************//// File Name	: 'timer.c'// Title		: System Timer function library// Author		: Pascal Stang - Copyright (C) 2000-2002// Created		: 11/22/2000// Revised		: 07/09/2003// Version		: 1.1// Target MCU	: Atmel AVR Series// Editor Tabs	: 4//// This code is distributed under the GNU Public License//		which can be found at http://www.gnu.org/licenses/gpl.txt////*****************************************************************************#ifndef WIN32	#include <avr/io.h>	#include <avr/signal.h>	#include <avr/interrupt.h>	#include <avr/pgmspace.h>	#include <avr/sleep.h>#endif#undef TCNT2#include "global.h"#include "timer.h"#include "rprintf.h"// Program ROM constants// the prescale division values stored in order of timer control register index// STOP, CLK, CLK/8, CLK/64, CLK/256, CLK/1024unsigned short __attribute__ ((progmem)) TimerPrescaleFactor[] = {0,1,8,64,256,1024};// the prescale division values stored in order of timer control register index// STOP, CLK, CLK/8, CLK/32, CLK/64, CLK/128, CLK/256, CLK/1024unsigned short __attribute__ ((progmem)) TimerRTCPrescaleFactor[] = {0,1,8,32,64,128,256,1024};// Global variables// time registersvolatile unsigned long TimerPauseReg;volatile unsigned long Timer0Reg0;volatile unsigned long Timer2Reg0;typedef void (*voidFuncPtr)(void);volatile static voidFuncPtr TimerIntFunc[TIMER_NUM_INTERRUPTS];// delay for a minimum of <us> microseconds // the time resolution is dependent on the time the loop takes // e.g. with 4Mhz and 5 cycles per loop, the resolution is 1.25 us void delay_us(unsigned short time_us) {	unsigned short delay_loops;	register unsigned short i;	delay_loops = (time_us+3)/5*CYCLES_PER_US; // +3 for rounding up (dirty) 	// one loop takes 5 cpu cycles 	for (i=0; i < delay_loops; i++) {};}/*void delay_ms(unsigned char time_ms){	unsigned short delay_count = F_CPU / 4000;	unsigned short cnt;	asm volatile ("\n"                  "L_dl1%=:\n\t"                  "mov %A0, %A2\n\t"                  "mov %B0, %B2\n"                  "L_dl2%=:\n\t"                  "sbiw %A0, 1\n\t"                  "brne L_dl2%=\n\t"                  "dec %1\n\t" "brne L_dl1%=\n\t":"=&w" (cnt)                  :"r"(time_ms), "r"((unsigned short) (delay_count))	);}*/void timerInit(void){	u08 intNum;	// detach all user functions from interrupts	for(intNum=0; intNum<TIMER_NUM_INTERRUPTS; intNum++)		timerDetach(intNum);	// initialize all timers	timer0Init();	timer1Init();	#ifdef TCNT2	// support timer2 only if it exists	timer2Init();	#endif	// enable interrupts	sei();}void timer0Init(){	// initialize timer 0	timer0SetPrescaler( TIMER0PRESCALE );	// set prescaler	outb(TCNT0, 0);							// reset TCNT0	sbi(TIMSK0, TOIE0);						// enable TCNT0 overflow interrupt	timer0ClearOverflowCount();				// initialize time registers}void timer1Init(void){	// initialize timer 1	timer1SetPrescaler( TIMER1PRESCALE );	// set prescaler	outb(TCNT1H, 0);						// reset TCNT1	outb(TCNT1L, 0);	sbi(TIMSK1, TOIE1);						// enable TCNT1 overflow}#ifdef TCNT2	// support timer2 only if it existsvoid timer2Init(void){	// initialize timer 2	timer2SetPrescaler( TIMER2PRESCALE );	// set prescaler	outb(TCNT2, 0);							// reset TCNT2	sbi(TIMSK2, TOIE2);						// enable TCNT2 overflow	timer2ClearOverflowCount();				// initialize time registers}#endifvoid timer0SetPrescaler(u08 prescale){	// set prescaler on timer 0	outb(TCCR0A, (inb(TCCR0A) & ~TIMER_PRESCALE_MASK) | prescale);}void timer1SetPrescaler(u08 prescale){	// set prescaler on timer 1	outb(TCCR1B, (inb(TCCR1B) & ~TIMER_PRESCALE_MASK) | prescale);}#ifdef TCNT2	// support timer2 only if it existsvoid timer2SetPrescaler(u08 prescale){	// set prescaler on timer 2	outb(TCCR2, (inb(TCCR2) & ~TIMER_PRESCALE_MASK) | prescale);}#endifu16 timer0GetPrescaler(void){	// get the current prescaler setting	return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR0A) & TIMER_PRESCALE_MASK)));}u16 timer1GetPrescaler(void){	// get the current prescaler setting	return (pgm_read_word(TimerPrescaleFactor+(inb(TCCR1B) & TIMER_PRESCALE_MASK)));}#ifdef TCNT2	// support timer2 only if it existsu16 timer2GetPrescaler(void){	//TODO: can we assume for all 3-timer AVR processors,	// that timer2 is the RTC timer?	// get the current prescaler setting	return (pgm_read_word(TimerRTCPrescaleFactor+(inb(TCCR2) & TIMER_PRESCALE_MASK)));}#endifvoid timerAttach(u08 interruptNum, void (*userFunc)(void) ){	// make sure the interrupt number is within bounds	if(interruptNum < TIMER_NUM_INTERRUPTS)	{		// set the interrupt function to run		// the supplied user's function		TimerIntFunc[interruptNum] = userFunc;	}}void timerDetach(u08 interruptNum){	// make sure the interrupt number is within bounds	if(interruptNum < TIMER_NUM_INTERRUPTS)	{		// set the interrupt function to run nothing		TimerIntFunc[interruptNum] = 0;	}}/*u32 timerMsToTics(u16 ms){	// calculate the prescaler division rate	u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));	// calculate the number of timer tics in x milliseconds	return (ms*(F_CPU/(prescaleDiv*256)))/1000;}u16 timerTicsToMs(u32 tics){	// calculate the prescaler division rate	u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));	// calculate the number of milliseconds in x timer tics	return (tics*1000*(prescaleDiv*256))/F_CPU;}*/void timerPause(unsigned short pause_ms){	// pauses for exactly <pause_ms> number of milliseconds	u08 timerThres;	u32 ticRateHz;	u32 pause;	// capture current pause timer value	timerThres = inb(TCNT0);	// reset pause timer overflow count	TimerPauseReg = 0;	// calculate delay for [pause_ms] milliseconds	// prescaler division = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)))	ticRateHz = F_CPU/timer0GetPrescaler();	// precision management	// prevent overflow and precision underflow	//	-could add more conditions to improve accuracy	if( ((ticRateHz < 429497) && (pause_ms <= 10000)) )		pause = (pause_ms*ticRateHz)/1000;	else		pause = pause_ms*(ticRateHz/1000);	// loop until time expires	while( ((TimerPauseReg<<8) | inb(TCNT0)) < (pause+timerThres) )	{		if( TimerPauseReg < (pause>>8));		{			// save power by idling the processor			set_sleep_mode(SLEEP_MODE_IDLE);			sleep_mode();		}	}	/* old inaccurate code, for reference		// calculate delay for [pause_ms] milliseconds	u16 prescaleDiv = 1<<(pgm_read_byte(TimerPrescaleFactor+inb(TCCR0)));	u32 pause = (pause_ms*(F_CPU/(prescaleDiv*256)))/1000;		TimerPauseReg = 0;	while(TimerPauseReg < pause);	*/}void timer0ClearOverflowCount(void){	// clear the timer overflow counter registers	Timer0Reg0 = 0;	// initialize time registers}long timer0GetOverflowCount(void){	// return the current timer overflow count	// (this is since the last timer0ClearOverflowCount() command was called)	return Timer0Reg0;}#ifdef TCNT2	// support timer2 only if it existsvoid timer2ClearOverflowCount(void){	// clear the timer overflow counter registers	Timer2Reg0 = 0;	// initialize time registers}long timer2GetOverflowCount(void){	// return the current timer overflow count	// (this is since the last timer2ClearOverflowCount() command was called)	return Timer2Reg0;}#endifvoid timer1PWMInit(u08 bitRes){	// configures timer1 for use with PWM output	// on OC1A and OC1B pins	// enable timer1 as 8,9,10bit PWM	if(bitRes == 9)	{	// 9bit mode		sbi(TCCR1A,PWM11);		cbi(TCCR1A,PWM10);	}	else if( bitRes == 10 )	{	// 10bit mode		sbi(TCCR1A,PWM11);		sbi(TCCR1A,PWM10);	}	else	{	// default 8bit mode		cbi(TCCR1A,PWM11);		sbi(TCCR1A,PWM10);	}	// clear output compare value A	outb(OCR1AH, 0);	outb(OCR1AL, 0);	// clear output compare value B	outb(OCR1BH, 0);	outb(OCR1BL, 0);}#ifdef WGM10// include support for arbitrary top-count PWM// on new AVR processors that support itvoid timer1PWMInitICR(u16 topcount){	// set PWM mode with ICR top-count	cbi(TCCR1A,WGM10);	sbi(TCCR1A,WGM11);	sbi(TCCR1B,WGM12);	sbi(TCCR1B,WGM13);		// set top count value	ICR1 = topcount;		// clear output compare value A	OCR1A = 0;	// clear output compare value B	OCR1B = 0;}#endifvoid timer1PWMOff(void){	// turn off timer1 PWM mode	cbi(TCCR1A,PWM11);	cbi(TCCR1A,PWM10);	// set PWM1A/B (OutputCompare action) to none	timer1PWMAOff();	timer1PWMBOff();}void timer1PWMAOn(void){	// turn on channel A (OC1A) PWM output	// set OC1A as non-inverted PWM	sbi(TCCR1A,COM1A1);	cbi(TCCR1A,COM1A0);}void timer1PWMBOn(void){	// turn on channel B (OC1B) PWM output	// set OC1B as non-inverted PWM	sbi(TCCR1A,COM1B1);	cbi(TCCR1A,COM1B0);}void timer1PWMAOff(void){	// turn off channel A (OC1A) PWM output	// set OC1A (OutputCompare action) to none	cbi(TCCR1A,COM1A1);	cbi(TCCR1A,COM1A0);}void timer1PWMBOff(void){	// turn off channel B (OC1B) PWM output	// set OC1B (OutputCompare action) to none	cbi(TCCR1A,COM1B1);	cbi(TCCR1A,COM1B0);}void timer1PWMASet(u16 pwmDuty){	// set PWM (output compare) duty for channel A	// this PWM output is generated on OC1A pin	// NOTE:	pwmDuty should be in the range 0-255 for 8bit PWM	//			pwmDuty should be in the range 0-511 for 9bit PWM	//			pwmDuty should be in the range 0-1023 for 10bit PWM	//outp( (pwmDuty>>8), OCR1AH);		// set the high 8bits of OCR1A	//outp( (pwmDuty&0x00FF), OCR1AL);	// set the low 8bits of OCR1A	OCR1A = pwmDuty;}void timer1PWMBSet(u16 pwmDuty){	// set PWM (output compare) duty for channel B	// this PWM output is generated on OC1B pin	// NOTE:	pwmDuty should be in the range 0-255 for 8bit PWM	//			pwmDuty should be in the range 0-511 for 9bit PWM	//			pwmDuty should be in the range 0-1023 for 10bit PWM	//outp( (pwmDuty>>8), OCR1BH);		// set the high 8bits of OCR1B	//outp( (pwmDuty&0x00FF), OCR1BL);	// set the low 8bits of OCR1B	OCR1B = pwmDuty;}//! Interrupt handler for tcnt0 overflow interruptTIMER_INTERRUPT_HANDLER(SIG_OVERFLOW0){	Timer0Reg0++;			// increment low-order counter	// increment pause counter	TimerPauseReg++;	// if a user function is defined, execute it too	if(TimerIntFunc[TIMER0OVERFLOW_INT])		TimerIntFunc[TIMER0OVERFLOW_INT]();}//! Interrupt handler for tcnt1 overflow interruptTIMER_INTERRUPT_HANDLER(SIG_OVERFLOW1){	// if a user function is defined, execute it	if(TimerIntFunc[TIMER1OVERFLOW_INT])		TimerIntFunc[TIMER1OVERFLOW_INT]();}#ifdef TCNT2	// support timer2 only if it exists//! Interrupt handler for tcnt2 overflow interruptTIMER_INTERRUPT_HANDLER(SIG_OVERFLOW2){	Timer2Reg0++;			// increment low-order counter	// if a user function is defined, execute it	if(TimerIntFunc[TIMER2OVERFLOW_INT])		TimerIntFunc[TIMER2OVERFLOW_INT]();}#endif#ifdef OCR0// include support for Output Compare 0 for new AVR processors that support it//! Interrupt handler for OutputCompare0 match (OC0) interruptTIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE0){	// if a user function is defined, execute it	if(TimerIntFunc[TIMER0OUTCOMPARE_INT])		TimerIntFunc[TIMER0OUTCOMPARE_INT]();}#endif//! Interrupt handler for CutputCompare1A match (OC1A) interruptTIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1A){	// if a user function is defined, execute it	if(TimerIntFunc[TIMER1OUTCOMPAREA_INT])		TimerIntFunc[TIMER1OUTCOMPAREA_INT]();}//! Interrupt handler for OutputCompare1B match (OC1B) interruptTIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE1B){	// if a user function is defined, execute it	if(TimerIntFunc[TIMER1OUTCOMPAREB_INT])		TimerIntFunc[TIMER1OUTCOMPAREB_INT]();}//! Interrupt handler for InputCapture1 (IC1) interruptTIMER_INTERRUPT_HANDLER(SIG_INPUT_CAPTURE1){	// if a user function is defined, execute it	if(TimerIntFunc[TIMER1INPUTCAPTURE_INT])		TimerIntFunc[TIMER1INPUTCAPTURE_INT]();}//! Interrupt handler for OutputCompare2 match (OC2) interruptTIMER_INTERRUPT_HANDLER(SIG_OUTPUT_COMPARE2){	// if a user function is defined, execute it	if(TimerIntFunc[TIMER2OUTCOMPARE_INT])		TimerIntFunc[TIMER2OUTCOMPARE_INT]();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -