📄 sacpmde.m
字号:
function [tr,bj,bm,n] = SACPMDE(VTR,XVmin,XVmax,D,NP,fname)
% 参数自适应差分进化算法,对Rastrigrin函数起作用
% aa 当前计算到第几次
% VTR 优化的目标值
% fname 选择测试函数
% XVmin 搜索空间下限
% XVmax 搜索空间上限
itermax = 8000; % maximum number of iterations (generations)
F = 0.6; % DE-stepsize F from interval [0, 2]
F1=0.45;
CR = 0.9; % crossover probability constant from interval [0, 1]
%-----DE Initialize--------------------------------------------------------
pop = zeros(NP,D); % initialize pop
for i = 1:NP
pop(i,:) = XVmin + rand(1,D).*(XVmax - XVmin);
end
popold = zeros(size(pop));% toggle population
val = zeros(1,NP); % create and reset the "cost array"
bestmem = zeros(1,D); % best population member ever
bestmemit = zeros(1,D); % best population member in iteration
for i = 1:NP % Evaluate the best member after initialization
input = pop(i,:);
output(i) = feval(fname,input);
end
val = output';
[bestvalit,idx] = min(val);
bestmemit = pop(idx,:); % best member of current iteration
bestmem = bestmemit; % best member ever
bestval = bestvalit; % best value ever
%-----DE Iteration---------------------------------------------------------
tr = zeros(1,itermax);
for j = 1:itermax
if (bestval-VTR) < 1e-5
break
end
popold = pop;
% generate the trail population
for i = 1:NP
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CR=0.1;
if val(i)<=mean(val)
CR=0.1+(0.6-0.1)*(val(i)-max(val))/(min(val)-max(val));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% pick up the donor and differential vectors
rd = fix(rand(1) * NP + 1);
while val(rd) > val(i)
rd = fix(rand(1) * NP + 1);
end
rb = fix(rand(1) * NP + 1);
while rb == i || rb == rd
rb = fix(rand(1) * NP + 1);
end
rc = fix(rand(1) * NP + 1);
while rc == i || rc == rd || rc==rb
rc = fix(rand(1) * NP + 1);
end
re = fix(rand(1) * NP + 1);
while re == i || re == rd || re==rb || re==rc
re = fix(rand(1) * NP + 1);
end
% bulid a trial vector and crossover
jr = fix(rand(1) * D + 1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 找基变量
tb=rd;
if val(rb,:)<=min(val(rd,:),val(rc,:))
tb=rb;
end
if val(rc,:)<=min(val(rd,:),val(rb,:))
tb=rc;
end
% 找另两个差分向量;
tm=rd;
if val(rb,:)>=min(val(rd,:),val(rc,:)) && val(rb,:)<=max(val(rd,:),val(rc,:))
tm=rb;
end
if val(rc,:)>=min(val(rd,:),val(rb,:)) && val(rc,:)<=max(val(rd,:),val(rb,:))
tm=rc;
end
% 找最差的向量
tw=rd;
if val(rb,:)>=max(val(rd,:),val(rc,:))
tw=rb;
end
if val(rc,:)>=max(val(rd,:),val(rb,:))
tw=rc;
end
% 自适应缩放因子
F=0.1+0.8*(val(tm)-val(tb))/(val(tw)-val(tb));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for k = 1:D
if rand(1)<=CR || k==jr
diff = F * (popold(tm,k) - popold(tw,k));
pop(i,k) = popold(tb,k) + diff;
else
pop(i,k) = popold(i,k);
end
end
for k = 1:D
if pop(i,k) > XVmax(k)
pop(i,k) = XVmax(k);
end
if pop(i,k) < XVmin(k)
pop(i,k) = XVmin(k);
end
end
end
% select trial vector
for i = 1:NP
input = pop(i,:);
output = feval(fname,input);
if output < val(i)
val(i) = output;
else
pop(i,:) = popold(i,:);
end
end
% find the best parameter vector and the best objective function
[bestvalit,idx] = min(val);
bestmemit = pop(idx,:);
if bestvalit < bestval
bestval = bestvalit;
bestmem = bestmemit;
end
tr(j) = bestval;
if abs(tr(j)) < VTR
break
end
bestval
tr(j)=bestval;
end
bj=bestval;
bm=bestmem;
n=j;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -