⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 模糊神经.html

📁 一个将模糊控制和神经网络相结合的方法
💻 HTML
字号:
<!DOCTYPE html  PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"><html xmlns:mwsh="http://www.mathworks.com/namespace/mcode/v1/syntaxhighlight.dtd">   <head>      <meta http-equiv="Content-Type" content="text/html; charset=utf-8">         <!--This HTML is auto-generated from an M-file.To make changes, update the M-file and republish this document.      -->      <title>&#27169;&#31946;&#31070;&#32463;</title>      <meta name="generator" content="MATLAB 7.4">      <meta name="date" content="2009-05-12">      <meta name="m-file" content="&#27169;&#31946;&#31070;&#32463;"><style>body {  background-color: white;  margin:10px;}h1 {  color: #990000;   font-size: x-large;}h2 {  color: #990000;  font-size: medium;}/* Make the text shrink to fit narrow windows, but not stretch too far in wide windows. */ p,h1,h2,div.content div {  max-width: 600px;  /* Hack for IE6 */  width: auto !important; width: 600px;}pre.codeinput {  background: #EEEEEE;  padding: 10px;}@media print {  pre.codeinput {word-wrap:break-word; width:100%;}} span.keyword {color: #0000FF}span.comment {color: #228B22}span.string {color: #A020F0}span.untermstring {color: #B20000}span.syscmd {color: #B28C00}pre.codeoutput {  color: #666666;  padding: 10px;}pre.error {  color: red;}p.footer {  text-align: right;  font-size: xx-small;  font-weight: lighter;  font-style: italic;  color: gray;}  </style></head>   <body>      <div class="content"><pre class="codeinput">clearclctic,<span class="comment">%[x,y]=data;</span>x=[1 1 1;1 2 3];y=[2 3 4]; <span class="comment">%%%%%--&#25968;&#25454;&#26174;&#31034;&#65292;&#36755;&#20837;&#20026;&#65293;&#20004;&#36755;&#20837;&#65292;&#36755;&#20986;&#20026;&#65293;&#21333;&#36755;&#20986;&#12290;--------&#26679;&#26412;&#20026;p2&#32452;</span>[p1,p2]=size(x);<span class="comment">%&#65293; &#19968;&#12290;&#39318;&#20808;&#35201;&#23545;&#26679;&#26412;&#36827;&#34892;&#32858;&#31867;&#20998;&#26512;&#65292;&#20197;&#27492;&#26469;&#30830;&#23450;&#27169;&#31946;&#35268;&#21017;&#20010;&#25968;&#12290;&#21033;&#29992;K-means&#27861;&#23545;&#26679;&#26412;&#32858;&#31867;&#12290;</span><span class="comment">%????&#27492;&#22788;&#30340;K&#65293; means &#27861;&#24453;&#21152;</span><span class="comment">%&#65293; &#20108;&#12290;&#24314;&#31435;&#27169;&#31946;&#25512;&#29702;&#31995;&#32479;</span><span class="comment">% &#38582;&#23646;&#24230;&#20989;&#25968;&#20010;&#25968;-&#65293;&#27169;&#31946;&#35268;&#21017;&#20010;&#25968;</span>k=5;<span class="comment">% &#21021;&#22987;&#21270;&#22235;&#20010;&#38582;&#23646;&#24230;&#20989;&#25968;&#30340;&#21442;&#25968;A,B&#21450;&#36755;&#20986;&#23618;&#21021;&#22987;&#26435;&#20540;W</span><span class="keyword">for</span> i=1:p1;<span class="keyword">for</span> j=1:k;m(i,j)=1+0.6*rands(1);b(i,j)=1+0.6*rands(1);<span class="keyword">end</span><span class="keyword">end</span><span class="keyword">for</span> j=1:k;w(j)=100+rand(1);<span class="keyword">end</span><span class="comment">%%%---&#25512;&#29702;&#35745;&#31639;&#36755;&#20986;&#20540;</span><span class="keyword">for</span> q=1:p2;<span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-----&#29992;&#21516;&#19968;&#38582;&#23646;&#24230;&#21442;&#25968;&#23545; &#36755;&#20837;&#26679;&#26412; X &#32047;&#35745;&#35745;&#31639;</span><span class="comment">% &#36873;&#29992;&#39640;&#26031;&#20989;&#25968;&#20316;&#20026;&#38582;&#23646;&#24230;&#65292;&#27714;&#38582;&#23646;&#24230;&#65292;&#20849; size(x,2)+k &#20010;&#12290;x(1) K&#20010;&#65292;x(2) K&#20010;</span><span class="keyword">for</span> i=1:p1;<span class="keyword">for</span> j=1:k;u(i,j)=gaussmf(x(i,q),[m(i,j),b(i,j)]);<span class="keyword">end</span><span class="keyword">end</span><span class="comment">% &#27169;&#31946;&#25512;&#29702;&#35745;&#31639;&#65306;a21,a22.&#20960;&#20010;&#38582;&#23646;&#24230;&#20989;&#25968;&#65292;&#24471;&#20986;&#20960;&#20010;&#20540;&#65292;&#26412;&#20363;&#20013;&#20004;&#20010;.</span><span class="comment">%%%%----&#30001;&#20197;&#21069;&#30340;&#21462;&#23567;&#20570;&#27861;&#25913;&#20026;&#30456;&#20056;&#8212;prod(x,1) or prod(x,2)&#8212;&#8212;&#8212;</span><span class="keyword">for</span> i=1:k;v(i)=1;j=1;<span class="keyword">while</span> j&lt;=p1;v(i)=v(i)*u(j,i);j=j+1;<span class="keyword">end</span><span class="keyword">end</span><span class="comment">% &#24402;&#19968;&#21270;&#35745;&#31639;&#27169;&#31946;&#25512;&#29702;&#30340;&#20540;&#65307;&#30456;&#24403;&#20110;&#24050;&#32463;&#38500;&#21435;&#20102;&#32463;&#20856;&#21435;&#27169;&#31946;&#36755;&#20986;&#30340;&#20998;&#27597;&#20540;</span><span class="comment">%for i=1:k;</span><span class="comment">%a3(i)=a2(i)/sum(a2);</span><span class="comment">%end</span><span class="comment">% &#31995;&#32479;&#36755;&#20986;</span>out1(q)=w*v';e(q)=(y(q)-out1(q));<span class="keyword">end</span>out=out1<span class="comment">%&#65293; &#19977;&#12290;&#21442;&#25968;&#20462;&#27491;&#36807;&#31243;&#12290; &#22686;&#21152;&#26041;&#24335;&#65292;&#38750;&#25209;&#22788;&#29702;&#26041;&#24335;&#36845;&#20195;</span><span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span><span class="comment">%%%%%%%%%%%%&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;&#65293;---------------------&#35823;&#24046;&#21453;&#21521;&#20256;&#25773;&#36807;&#31243;&#65293;&#65293;&#65293;-----------------------------------------</span><span class="comment">% &#21462;&#35823;&#24046;&#20989;&#25968;&#65306;E&#65309;(1/2)*sumsqr(t-y)</span>E=(1/2)*sumsqr(y-out)EE=E;e<span class="comment">% e=sum(y-out)</span>lr=0.3; <span class="comment">% c2=zeros(2,2);</span><span class="comment">%%%%----------------------------------------&#35823;&#24046;&#21453;&#20256;&#21518;&#30340;&#21442;&#25968;&#20462;&#27491;&#36807;&#31243;-------------------</span>r=1;p=1;s=1000;<span class="keyword">while</span> p&lt;=s &amp; EE&gt;1e-10<span class="comment">%%%%%%%%%%%%%_____&#38582;&#23646;&#24230;&#21442;&#25968; M. B &#36755;&#20986;&#23618;&#26435;&#20540;&#21442;&#25968; W &#30340;&#20462;&#27491;&#36807;&#31243;_____%%%%%%%%%%%%</span><span class="comment">%%1.--W</span>wc=zeros(1,k);<span class="keyword">for</span> i=1:k;wc(i)=lr*e(r)*v(i);<span class="keyword">end</span><span class="comment">%%2.--M</span>mc=zeros(p1,k);<span class="keyword">for</span> i=1:p1;<span class="keyword">for</span> j=1:k;mc(i,j)=2*lr*e(r) * w(j) * (v(j)/u(i,j)) * exp(-((x(i,r)-m(i,j)).^2)/(b(i,j).^2))* (x(i,r)-m(i,j))/(b(i,j).^2);<span class="keyword">end</span><span class="keyword">end</span><span class="comment">%%3.--B</span>bc=zeros(p1,k);<span class="keyword">for</span> i=1:p1;<span class="keyword">for</span> j=1:k;bc(i,j)=2*lr*e(r)* w(j) * (v(j)/u(i,j)) * exp(-((x(i,r)-m(i,j)).^2)/(b(i,j).^2)) * ((x(i,r)-m(i,j)).^2)/(b(i,j).^3);<span class="keyword">end</span><span class="keyword">end</span><span class="comment">% 4.&#21442;&#25968;&#20462;&#27491; m b w</span>m=m+mc;b=b+bc;w=w+wc;<span class="comment">%%%%%%%%%%%_______&#21033;&#29992;&#20462;&#27491;&#21518;&#30340;&#21442;&#25968;&#37325;&#26032;&#35745;&#31639;_____________%%%%%%%%%%%%%%%%%%%%%</span><span class="comment">% 5.&#21033;&#29992;&#20462;&#27491;&#36807;&#30340;&#21442;&#25968;&#37325;&#26032;&#35745;&#31639;&#36755;&#20986;</span><span class="keyword">for</span> q=1:p2;<span class="keyword">for</span> i=1:p1;<span class="keyword">for</span> j=1:k;u(i,j)=gaussmf(x(i,q),[m(i,j),b(i,j)]);<span class="keyword">end</span><span class="keyword">end</span><span class="keyword">for</span> i=1:k;v(i)=1;j=1;<span class="keyword">while</span> j&lt;=p1;v(i)=v(i)*u(j,i);j=j+1;<span class="keyword">end</span><span class="keyword">end</span>out1(q)=w*v';<span class="keyword">end</span>out=out1;p=p+1;EE=(1/2)*sumsqr(y-out);E(p)=EE;r=r+1;<span class="keyword">if</span> r&gt;p2r=1;<span class="keyword">end</span>e(r)=(y(r)-out(r));<span class="keyword">end</span><span class="comment">%%%%%%%%%%%%%%%%%%%________________&#24403;&#35823;&#24046;&#25110;&#36845;&#20195;&#27493;&#25968;&#28385;&#36275;&#35201;&#27714;&#21518;&#24471;&#21040;&#32467;&#26524;_________________%%%%%%</span><span class="comment">%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</span>m,b,w,E_out=EE,eepoch=1:size(E,2);figureplot(epoch,E,<span class="string">'-r'</span>);axis([0 1.5*s min(E) max(E)]);set(gca,<span class="string">'fontsize'</span>,8);set(gca,<span class="string">'xtick'</span>,0:s/10:1.5*s);<span class="comment">%set(gca,'ytick',1e-30:1e5:1e5);</span><span class="comment">%set(gcf,'color','b')</span>title(<span class="string">'&#35823;&#24046;&#21464;&#21270;&#26354;&#32447;'</span>);xlabel(<span class="string">'&#27493;&#25968;'</span>);ylabel(<span class="string">'&#35823;&#24046;'</span>);toc</pre><pre class="codeoutput">out =  387.8237  354.7163  130.8296E =  1.4433e+005e = -385.8237 -351.7163 -126.8296m =  1.0e+004 *    0.0193   -0.1812    0.2562   -0.1324    0.2621   -0.3428    0.6440    1.5911   -0.0969    0.3025b =  1.0e+004 *   -0.0047   -0.0541   -0.0786   -0.0332   -0.0922   -0.0899   -0.3594   -1.0052   -0.0059   -0.0682w =   21.2743    2.4621   17.7548   -4.5161  -32.5508E_out =    3.8667e =   -2.1346    1.3826    0.7520Elapsed time is 2.312213 seconds.</pre><img vspace="5" hspace="5" src="%E6%A8%A1%E7%B3%8A%E7%A5%9E%E7%BB%8F_01.png"> <p class="footer"><br>            Published with MATLAB&reg; 7.4<br></p>      </div>      <!--##### SOURCE BEGIN #####%%
clear
clc
tic,
%[x,y]=data;
x=[1 1 1;
1 2 3];
y=[2 3 4]; %%%%%REPLACE_WITH_DASH_DASH数据显示,输入为-两输入,输出为-单输出。REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH样本为p2组
[p1,p2]=size(x);
%- 一。首先要对样本进行聚类分析,以此来确定模糊规则个数。利用K-means法对样本聚类。

%????此处的K- means 法待加

%- 二。建立模糊推理系统

% 隶属度函数个数--模糊规则个数
k=5;
% 初始化四个隶属度函数的参数A,B及输出层初始权值W

for i=1:p1; 
for j=1:k;
m(i,j)=1+0.6*rands(1);
b(i,j)=1+0.6*rands(1);
end
end
for j=1:k;
w(j)=100+rand(1);
end
%%%REPLACE_WITH_DASH_DASH-推理计算输出值
for q=1:p2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH-用同一隶属度参数对 输入样本 X 累计计算
% 选用高斯函数作为隶属度,求隶属度,共 size(x,2)+k 个。x(1) K个,x(2) K个
for i=1:p1;
for j=1:k;
u(i,j)=gaussmf(x(i,q),[m(i,j),b(i,j)]);
end
end
% 模糊推理计算:a21,a22.几个隶属度函数,得出几个值,本例中两个.
%%%%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH由以前的取小做法改为相乘—prod(x,1) or prod(x,2)———
for i=1:k;
v(i)=1;
j=1;
while j<=p1;
v(i)=v(i)*u(j,i);
j=j+1;
end
end
% 归一化计算模糊推理的值;相当于已经除去了经典去模糊输出的分母值
%for i=1:k;
%a3(i)=a2(i)/sum(a2);
%end
% 系统输出
out1(q)=w*v';
e(q)=(y(q)-out1(q));
end
out=out1

%- 三。参数修正过程。 增加方式,非批处理方式迭代
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%--------REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH-误差反向传播过程---REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH-
% 取误差函数:E=(1/2)*sumsqr(t-y)
E=(1/2)*sumsqr(y-out)
EE=E;
e
% e=sum(y-out)
lr=0.3; % c2=zeros(2,2);
%%%%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH误差反传后的参数修正过程REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH-
r=1;
p=1;
s=1000;
while p<=s & EE>1e-10
%%%%%%%%%%%%%_____隶属度参数 M. B 输出层权值参数 W 的修正过程_____%%%%%%%%%%%%
%%1.REPLACE_WITH_DASH_DASHW
wc=zeros(1,k);
for i=1:k;
wc(i)=lr*e(r)*v(i);
end
%%2.REPLACE_WITH_DASH_DASHM
mc=zeros(p1,k);
for i=1:p1;
for j=1:k;
mc(i,j)=2*lr*e(r) * w(j) * (v(j)/u(i,j)) * exp(-((x(i,r)-m(i,j)).^2)/(b(i,j).^2))* (x(i,r)-m(i,j))/(b(i,j).^2);
end
end
%%3.REPLACE_WITH_DASH_DASHB
bc=zeros(p1,k);
for i=1:p1;
for j=1:k;
bc(i,j)=2*lr*e(r)* w(j) * (v(j)/u(i,j)) * exp(-((x(i,r)-m(i,j)).^2)/(b(i,j).^2)) * ((x(i,r)-m(i,j)).^2)/(b(i,j).^3);
end
end
% 4.参数修正 m b w
m=m+mc;
b=b+bc;
w=w+wc;
%%%%%%%%%%%_______利用修正后的参数重新计算_____________%%%%%%%%%%%%%%%%%%%%%
% 5.利用修正过的参数重新计算输出
for q=1:p2; 
for i=1:p1;
for j=1:k;
u(i,j)=gaussmf(x(i,q),[m(i,j),b(i,j)]);
end
end
for i=1:k;
v(i)=1;
j=1;
while j<=p1;
v(i)=v(i)*u(j,i);
j=j+1;
end
end
out1(q)=w*v';
end
out=out1;
p=p+1;
EE=(1/2)*sumsqr(y-out);
E(p)=EE;
r=r+1;
if r>p2
r=1;
end
e(r)=(y(r)-out(r));
end
%%%%%%%%%%%%%%%%%%%________________当误差或迭代步数满足要求后得到结果_________________%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
m,b,w,E_out=EE,e
epoch=1:size(E,2);
figure
plot(epoch,E,'-r');
axis([0 1.5*s min(E) max(E)]);
set(gca,'fontsize',8);
set(gca,'xtick',0:s/10:1.5*s);
%set(gca,'ytick',1e-30:1e5:1e5);
%set(gcf,'color','b')
title('误差变化曲线');xlabel('步数');ylabel('误差');
toc
 
##### SOURCE END #####-->   </body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -