📄 m_idist.m
字号:
function [s,a12,a21] = m_idist(lon1,lat1,lon2,lat2,spheroid)
% M_IDIST - On an ellipsoidal earth, compute the distance between
% two points within a few millimeters of accuracy, compute forward
% azimuth, and compute backward azimuth, all using a vectorized
% version of Vincenty's algorithm.
%
% [s,a12,a21] = m_idist(lon1,lat1,lon2,lat2,spheroid)
%
% lat1 = GEODETIC latitude of first point (degrees)
% lon1 = longitude of first point (degrees)
% lat2, lon2 = second point (degrees)
% spheroid = (Optional) spheroid, defaults to 'wgs84'
% s = distance in meters
% a12 = azimuth in degrees from first point to second point (forward)
% a21 = azimuth in degrees from second point to first point (backward)
% (Azimuths are in degrees clockwise from north.)
%
% Inputs can be all the same size, or a mix of scalars and matrices.
% If a mixture, inputs are expanded as required.
%
% Original algorithm source:
% T. Vincenty, "Direct and Inverse Solutions of Geodesics on the Ellipsoid
% with Application of Nested Equations", Survey Review, vol. 23, no. 176,
% April 1975, pp 88-93.
% Available at: http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
%
% Code slightly modified version of vdist.m (M. Kleder) available
% at user-contributed area of www.mathworks.com
%
% See also M_FDIST, M_GEODESIC, M_LLDIST
% (Original notes)
% Notes: (1) lat1,lon1,lat2,lon2 can be any (identical) size/shape. Outputs
% will have the same size and shape.
% (2) Error correcting code, convergence failure traps, antipodal
% corrections, polar error corrections, WGS84 ellipsoid
% parameters, testing, and comments: Michael Kleder, 2004.
% (3) Azimuth implementation (including quadrant abiguity
% resolution) and code vectorization, Michael Kleder, Sep 2005.
% (4) Vectorization is convergence sensitive; that is, quantities
% which have already converged to within tolerance are not
% recomputed during subsequent iterations (while other
% quantities are still converging).
% (5) Vincenty describes his distance algorithm as precise to within
% 0.01 millimeters, subject to the ellipsoidal model.
% (6) For distance calculations, essentially antipodal points are
% treated as exactly antipodal, potentially reducing accuracy
% slightly.
% (7) Distance failures for points exactly at the poles are
% eliminated by moving the points by 0.6 millimeters.
% (8) The Vincenty distance algorithm was transcribed verbatim by
% Peter Cederholm, August 12, 2003. It was modified and
% translated to English by Michael Kleder.
% Mr. Cederholm's website is http://www.plan.aau.dk/~pce/
% (9) Distances agree with the Mapping Toolbox, version 2.2 (R14SP3)
% with a max relative difference of about 5e-9, except when the
% two points are nearly antipodal, and except when one point is
% near the equator and the two longitudes are nearly 180 degrees
% apart. This function (vdist) is more accurate in such cases.
% For example, note this difference (as of this writing):
% >>vdist(0.2,305,15,125)
% 18322827.0131551
% >>distance(0.2,305,15,125,[6378137 0.08181919])
% 0
% (10) Azimuths FROM the north pole (either forward starting at the
% north pole or backward when ending at the north pole) are set
% to 180 degrees by convention. Azimuths FROM the south pole are
% set to 0 degrees by convention.
% (11) Azimuths agree with the Mapping Toolbox, version 2.2 (R14SP3)
% to within about a hundred-thousandth of a degree, except when
% traversing to or from a pole, where the convention for this
% function is described in (10), and except in the cases noted
% above in (9).
% (12) No warranties; use at your own risk.
%
% R. Pawlowicz
% 9/jan/2005 - changed name, altered inputs to m_map style (lon first),
% added ellipses, many minor simplifications to tighten code.
pi180=pi/180;
MAP_ELLIP = struct ( 'normal', [1.0, 0], ...
'sphere', [6370997.0, 0], ...
'grs80' , [6378137.0, 1/298.257], ...
'grs67' , [6378160.0, 1/247.247], ...
'wgs84' , [6378137.0, 1/298.257223563], ...
'wgs72' , [6378135.0, 1/298.260], ...
'wgs66' , [6378145.0, 1/298.250], ...
'wgs60' , [6378165.0, 1/298.300], ...
'clrk66', [6378206.4, 1/294.980], ...
'clrk80', [6378249.1, 1/293.466], ...
'intl24', [6378388.0, 1/297.000], ...
'intl67', [6378157.5, 1/298.250]);
if nargin<5,
spheroid='wgs84';
end;
ellip=getfield(MAP_ELLIP,spheroid);
if length(ellip)~=2,
disp(MAP_ELLIP);
error('Spheroid not chosen from above list');
end;
% Do the equivalent of meshgrid-type calls to make all
% matrix sizes match. To do this we can have no more than
% two different numbers in any particular dimension, and one
% of these has to be a '1'.
allsize=[size(lon1);size(lat1);size(lon2);size(lat2)];
i1=ones(1,size(allsize,2));
for k=1:size(allsize,2),
rs=unique(allsize(:,k));
if length(rs)==2 & rs(1)==1,
j1=i1;j1(k)=rs(2);
if allsize(1,k)==1,lon1=repmat(lon1,j1); end;
if allsize(2,k)==1,lat1=repmat(lat1,j1); end;
if allsize(3,k)==1,lon2=repmat(lon2,j1); end;
if allsize(4,k)==1,lat2=repmat(lat2,j1); end;
elseif length(rs)>2,
error('incompatible array sizes!');
end;
end;
% reshape inputs
keepsize = size(lat1);
lat1=lat1(:);
lon1=lon1(:);
lat2=lat2(:);
lon2=lon2(:);
% Input check:
if any(abs(lat1)>90 | abs(lat2)>90)
error('Input latitudes must be between -90 and 90 degrees, inclusive.')
end
% correct for errors at exact poles by adjusting 0.6 millimeters:
kidx = abs(90-abs(lat1)) < 1e-10;
if any(kidx);
lat1(kidx) = sign(lat1(kidx))*(90-(1e-10));
end
kidx = abs(90-abs(lat2)) < 1e-10;
if any(kidx)
lat2(kidx) = sign(lat2(kidx))*(90-(1e-10));
end
% Algorithm begins here
a=ellip(1);
b=a*(1-ellip(2));
f = (a-b)/a;
U1 = atan((1-f)*tan(lat1*pi180));
U2 = atan((1-f)*tan(lat2*pi180));
% Get longitude difference (short way around)
L = abs(mod(lon2,360)-mod(lon1,360))*pi180;
kidx = L > pi;
if any(kidx)
L(kidx) = 2*pi - L(kidx);
end
lambda = L;
lambdaold = zeros(size(lat1));
alpha = lambdaold;
sinsigma=lambdaold;
cossigma=lambdaold;
sigma = lambdaold;
cos2sigmam = lambdaold;
C = lambdaold;
k = logical(ones(size(lat1)));
itercount = 0;
warninggiven = logical(0);
while any(k) % force at least one execution
itercount = itercount+1;
if itercount > 50
if ~warninggiven
warning(['Essentially antipodal points encountered. ' ...
'Precision may be reduced slightly.']);
end
lambda(k) = pi;
break
end
% eliminate rare imaginary portions at limit of numerical precision:
sinsigma(k) = real( sqrt((cos(U2(k)).*sin(lambda(k))).^2+ ...
(cos(U1(k)).*sin(U2(k))-sin(U1(k)).*cos(U2(k)).*cos(lambda(k))).^2) );
cossigma(k) = real( sin(U1(k)).*sin(U2(k))+cos(U1(k)).*cos(U2(k)).*cos(lambda(k)) );
sigma(k) = atan2(sinsigma(k),cossigma(k));
alpha(k) = asin(cos(U1(k)).*cos(U2(k)).*sin(lambda(k))./sinsigma(k));
cos2sigmam(k) = cossigma(k)-2*sin(U1(k)).*sin(U2(k))./cos(alpha(k)).^2;
C(k) = f/16*cos(alpha(k)).^2.*(4+f*(4-3*cos(alpha(k)).^2));
lambdaold(k) = lambda(k);
lambda(k) = L(k)+(1-C(k)).*f.*sin(alpha(k)).*(sigma(k)+ ...
C(k).*sinsigma(k).*(cos2sigmam(k)+ ...
C(k).*cossigma(k).*(-1+2.*cos2sigmam(k).^2)));
% correct for convergence failure in the case of essentially antipodal
% points
if any(lambda(k) > pi)
warning(['Essentially antipodal points encountered. ' ...
'Precision may be reduced slightly.']);
warninggiven = logical(1);
lambdaold(lambda>pi) = pi;
lambda(lambda>pi) = pi;
end
k = abs(lambda-lambdaold) > 1e-12;
end
u2 = cos(alpha).^2.*(a^2-b^2)/b^2;
A = 1+u2./16384.*(4096+u2.*(-768+u2.*(320-175.*u2)));
B = u2./1024.*(256+u2.*(-128+u2.*(74-47.*u2)));
deltasigma = B.*sin(sigma).*(cos2sigmam+B./4.*(cos(sigma).*(-1+2.*cos2sigmam.^2) ...
-B./6.*cos2sigmam.*(-3+4.*sin(sigma).^2).*(-3+4*cos2sigmam.^2)));
s = reshape(b.*A.*(sigma-deltasigma),keepsize);
if nargout > 1
% From point #1 to point #2
% correct sign of lambda for azimuth calcs:
lambda = abs(lambda);
kidx=sign(sin((lon2-lon1)*pi180)) .* sign(sin(lambda)) < 0;
lambda(kidx) = -lambda(kidx);
numer = cos(U2).*sin(lambda);
denom = cos(U1).*sin(U2)-sin(U1).*cos(U2).*cos(lambda);
a12 = reshape( mod( atan2(numer,denom)/pi180 , 360 ), keepsize);
% from poles:
a12(lat1 <= -90) = 0;
a12(lat1 >= 90 ) = 180;
end
if nargout > 2
% From point #2 to point #1
% correct sign of lambda for azimuth calcs:
lambda = abs(lambda);
kidx=sign(sin((lon1-lon2)*pi180)) .* sign(sin(lambda)) < 0;
lambda(kidx)=-lambda(kidx);
numer = cos(U1).*sin(lambda);
denom = sin(U1).*cos(U2)-cos(U1).*sin(U2).*cos(lambda);
a21 = reshape( mod(atan2(numer,denom)/pi180, 360 ), keepsize);
% backwards from poles:
a21(lat2 >= 90) = pi;
a21(lat2 <= -90) = 0;
end
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -