📄 clusterpoints.m
字号:
%-----------------------------------------------------------
% Cluster Points using the J-Linkage algorithm
%
% Usage:
%
% [T, Z, Y, totdbin] = clusterPoints(Points,inliersThreshold,totd)
%
% Arguments:
% totd - Point-Model distance matrix
% inliersThreshold - Ransac inlier Threshold value.
%
% Returns:
% T - Clustered points Labels
% Z - Hierarchical clustering tree
% Y - Pairwise Jaccard Distance
% totdbin - Consensus/Preference set matrix
%
% Authors: R.Toldo A.Fusiello, department of computer science - University of Verona.
% Reference Paper: R. Toldo, A. Fusiello. Robust Multiple Structures Estimation with J-linkage. Proceeding of the European Conference on Computer Vision, 2008.
%-----------------------------------------------------------
function [T, Z, Y, totdbin] = clusterPoints(totd, inliersThreshold)
corM = find(totd < inliersThreshold);
totdbin = false(size(totd));
totdbin(corM) = true;
Y = pDistJaccard(totdbin');
Z = linkageIntersect(Y, totdbin);
T = cluster(Z,'cutoff',1-(1/(size(totdbin,1)))+eps,'criterion','distance');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -