⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 milenage.c

📁 最新的Host AP 新添加了许多pcmcia 的驱动
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208) * Copyright (c) 2006-2007 <j@w1.fi> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Alternatively, this software may be distributed under the terms of BSD * license. * * See README and COPYING for more details. * * This file implements an example authentication algorithm defined for 3GPP * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow * EAP-AKA to be tested properly with real USIM cards. * * This implementations assumes that the r1..r5 and c1..c5 constants defined in * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00, * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to * be AES (Rijndael). */#include "includes.h"#include "common.h"#include "milenage.h"#include "aes_wrap.h"/** * milenage_f1 - Milenage f1 and f1* algorithms * @opc: OPc = 128-bit value derived from OP and K * @k: K = 128-bit subscriber key * @_rand: RAND = 128-bit random challenge * @sqn: SQN = 48-bit sequence number * @amf: AMF = 16-bit authentication management field * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL * Returns: 0 on success, -1 on failure */static int milenage_f1(const u8 *opc, const u8 *k, const u8 *_rand,		       const u8 *sqn, const u8 *amf, u8 *mac_a, u8 *mac_s){	u8 tmp1[16], tmp2[16], tmp3[16];	int i;	/* tmp1 = TEMP = E_K(RAND XOR OP_C) */	for (i = 0; i < 16; i++)		tmp1[i] = _rand[i] ^ opc[i];	if (aes_128_encrypt_block(k, tmp1, tmp1))		return -1;	/* tmp2 = IN1 = SQN || AMF || SQN || AMF */	os_memcpy(tmp2, sqn, 6);	os_memcpy(tmp2 + 6, amf, 2);	os_memcpy(tmp2 + 8, tmp2, 8);	/* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */	/* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */	for (i = 0; i < 16; i++)		tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i];	/* XOR with TEMP = E_K(RAND XOR OP_C) */	for (i = 0; i < 16; i++)		tmp3[i] ^= tmp1[i];	/* XOR with c1 (= ..00, i.e., NOP) */	/* f1 || f1* = E_K(tmp3) XOR OP_c */	if (aes_128_encrypt_block(k, tmp3, tmp1))		return -1;	for (i = 0; i < 16; i++)		tmp1[i] ^= opc[i];	if (mac_a)		os_memcpy(mac_a, tmp1, 8); /* f1 */	if (mac_s)		os_memcpy(mac_s, tmp1 + 8, 8); /* f1* */	return 0;}/** * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms * @opc: OPc = 128-bit value derived from OP and K * @k: K = 128-bit subscriber key * @_rand: RAND = 128-bit random challenge * @res: Buffer for RES = 64-bit signed response (f2), or %NULL * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL * Returns: 0 on success, -1 on failure */static int milenage_f2345(const u8 *opc, const u8 *k, const u8 *_rand,			  u8 *res, u8 *ck, u8 *ik, u8 *ak, u8 *akstar){	u8 tmp1[16], tmp2[16], tmp3[16];	int i;	/* tmp2 = TEMP = E_K(RAND XOR OP_C) */	for (i = 0; i < 16; i++)		tmp1[i] = _rand[i] ^ opc[i];	if (aes_128_encrypt_block(k, tmp1, tmp2))		return -1;	/* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */	/* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */	/* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */	/* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */	/* f2 and f5 */	/* rotate by r2 (= 0, i.e., NOP) */	for (i = 0; i < 16; i++)		tmp1[i] = tmp2[i] ^ opc[i];	tmp1[15] ^= 1; /* XOR c2 (= ..01) */	/* f5 || f2 = E_K(tmp1) XOR OP_c */	if (aes_128_encrypt_block(k, tmp1, tmp3))		return -1;	for (i = 0; i < 16; i++)		tmp3[i] ^= opc[i];	if (res)		os_memcpy(res, tmp3 + 8, 8); /* f2 */	if (ak)		os_memcpy(ak, tmp3, 6); /* f5 */	/* f3 */	if (ck) {		/* rotate by r3 = 0x20 = 4 bytes */		for (i = 0; i < 16; i++)			tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i];		tmp1[15] ^= 2; /* XOR c3 (= ..02) */		if (aes_128_encrypt_block(k, tmp1, ck))			return -1;		for (i = 0; i < 16; i++)			ck[i] ^= opc[i];	}	/* f4 */	if (ik) {		/* rotate by r4 = 0x40 = 8 bytes */		for (i = 0; i < 16; i++)			tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i];		tmp1[15] ^= 4; /* XOR c4 (= ..04) */		if (aes_128_encrypt_block(k, tmp1, ik))			return -1;		for (i = 0; i < 16; i++)			ik[i] ^= opc[i];	}	/* f5* */	if (akstar) {		/* rotate by r5 = 0x60 = 12 bytes */		for (i = 0; i < 16; i++)			tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i];		tmp1[15] ^= 8; /* XOR c5 (= ..08) */		if (aes_128_encrypt_block(k, tmp1, tmp1))			return -1;		for (i = 0; i < 6; i++)			akstar[i] = tmp1[i] ^ opc[i];	}	return 0;}/** * milenage_generate - Generate AKA AUTN,IK,CK,RES * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.) * @amf: AMF = 16-bit authentication management field * @k: K = 128-bit subscriber key * @sqn: SQN = 48-bit sequence number * @_rand: RAND = 128-bit random challenge * @autn: Buffer for AUTN = 128-bit authentication token * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL * @res: Buffer for RES = 64-bit signed response (f2), or %NULL * @res_len: Max length for res; set to used length or 0 on failure */void milenage_generate(const u8 *opc, const u8 *amf, const u8 *k,		       const u8 *sqn, const u8 *_rand, u8 *autn, u8 *ik,		       u8 *ck, u8 *res, size_t *res_len){	int i;	u8 mac_a[8], ak[6];	if (*res_len < 8) {		*res_len = 0;		return;	}	if (milenage_f1(opc, k, _rand, sqn, amf, mac_a, NULL) ||	    milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL)) {		*res_len = 0;		return;	}	*res_len = 8;	/* AUTN = (SQN ^ AK) || AMF || MAC */	for (i = 0; i < 6; i++)		autn[i] = sqn[i] ^ ak[i];	os_memcpy(autn + 6, amf, 2);	os_memcpy(autn + 8, mac_a, 8);}/** * milenage_auts - Milenage AUTS validation * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.) * @k: K = 128-bit subscriber key * @_rand: RAND = 128-bit random challenge * @auts: AUTS = 112-bit authentication token from client * @sqn: Buffer for SQN = 48-bit sequence number * Returns: 0 = success (sqn filled), -1 on failure */int milenage_auts(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *auts,		  u8 *sqn){	u8 amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */	u8 ak[6], mac_s[8];	int i;	if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))		return -1;	for (i = 0; i < 6; i++)		sqn[i] = auts[i] ^ ak[i];	if (milenage_f1(opc, k, _rand, sqn, amf, NULL, mac_s) ||	    memcmp(mac_s, auts + 6, 8) != 0)		return -1;	return 0;}/** * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.) * @k: K = 128-bit subscriber key * @_rand: RAND = 128-bit random challenge * @sres: Buffer for SRES = 32-bit SRES * @kc: Buffer for Kc = 64-bit Kc * Returns: 0 on success, -1 on failure */int gsm_milenage(const u8 *opc, const u8 *k, const u8 *_rand, u8 *sres, u8 *kc){	u8 res[8], ck[16], ik[16];	int i;	if (milenage_f2345(opc, k, _rand, res, ck, ik, NULL, NULL))		return -1;	for (i = 0; i < 8; i++)		kc[i] = ck[i] ^ ck[i + 8] ^ ik[i] ^ ik[i + 8];#ifdef GSM_MILENAGE_ALT_SRES	os_memcpy(sres, res, 4);#else /* GSM_MILENAGE_ALT_SRES */	for (i = 0; i < 4; i++)		sres[i] = res[i] ^ res[i + 4];#endif /* GSM_MILENAGE_ALT_SRES */	return 0;}/** * milenage_generate - Generate AKA AUTN,IK,CK,RES * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.) * @k: K = 128-bit subscriber key * @sqn: SQN = 48-bit sequence number * @_rand: RAND = 128-bit random challenge * @autn: AUTN = 128-bit authentication token * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL * @res: Buffer for RES = 64-bit signed response (f2), or %NULL * @res_len: Variable that will be set to RES length * @auts: 112-bit buffer for AUTS * Returns: 0 on success, -1 on failure, or -2 on synchronization failure */int milenage_check(const u8 *opc, const u8 *k, const u8 *sqn, const u8 *_rand,		   const u8 *autn, u8 *ik, u8 *ck, u8 *res, size_t *res_len,		   u8 *auts){	int i;	u8 mac_a[8], ak[6], rx_sqn[6];	const u8 *amf;	wpa_hexdump(MSG_DEBUG, "Milenage: AUTN", autn, 16);	wpa_hexdump(MSG_DEBUG, "Milenage: RAND", _rand, 16);	if (milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL))		return -1;	*res_len = 8;	wpa_hexdump_key(MSG_DEBUG, "Milenage: RES", res, *res_len);	wpa_hexdump_key(MSG_DEBUG, "Milenage: CK", ck, 16);	wpa_hexdump_key(MSG_DEBUG, "Milenage: IK", ik, 16);	wpa_hexdump_key(MSG_DEBUG, "Milenage: AK", ak, 6);	/* AUTN = (SQN ^ AK) || AMF || MAC */	for (i = 0; i < 6; i++)		rx_sqn[i] = autn[i] ^ ak[i];	wpa_hexdump(MSG_DEBUG, "Milenage: SQN", rx_sqn, 6);	if (os_memcmp(rx_sqn, sqn, 6) <= 0) {		u8 auts_amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */		if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))			return -1;		wpa_hexdump_key(MSG_DEBUG, "Milenage: AK*", ak, 6);		for (i = 0; i < 6; i++)			auts[i] = sqn[i] ^ ak[i];		if (milenage_f1(opc, k, _rand, sqn, auts_amf, NULL, auts + 6))			return -1;		wpa_hexdump(MSG_DEBUG, "Milenage: AUTS", auts, 14);		return -2;	}	amf = autn + 6;	wpa_hexdump(MSG_DEBUG, "Milenage: AMF", amf, 2);	if (milenage_f1(opc, k, _rand, rx_sqn, amf, mac_a, NULL))		return -1;	wpa_hexdump(MSG_DEBUG, "Milenage: MAC_A", mac_a, 8);	if (os_memcmp(mac_a, autn + 8, 8) != 0) {		wpa_printf(MSG_DEBUG, "Milenage: MAC mismatch");		wpa_hexdump(MSG_DEBUG, "Milenage: Received MAC_A",			    autn + 8, 8);		return -1;	}	return 0;}#ifdef TEST_MAIN_MILENAGEextern int wpa_debug_level;/** * milenage_opc - Determine OPc from OP and K * @op: OP = 128-bit operator variant algorithm configuration field * @k: K = 128-bit subscriber key * @opc: Buffer for OPc = 128-bit value derived from OP and K */static void milenage_opc(const u8 *op, const u8 *k, u8 *opc){	int i;	/* OP_C = OP XOR E_K(OP) */	aes_128_encrypt_block(k, op, opc);	for (i = 0; i < 16; i++)		opc[i] ^= op[i];}struct gsm_milenage_test_set {	u8 ki[16];	u8 rand[16];	u8 opc[16];	u8 sres1[4];	u8 sres2[4];	u8 kc[8];};static const struct gsm_milenage_test_set gsm_test_sets[] ={	{		/* 3GPP TS 55.205 v6.0.0 - Test Set 1 */		{ 0x46, 0x5b, 0x5c, 0xe8, 0xb1, 0x99, 0xb4, 0x9f,		  0xaa, 0x5f, 0x0a, 0x2e, 0xe2, 0x38, 0xa6, 0xbc },		{ 0x23, 0x55, 0x3c, 0xbe, 0x96, 0x37, 0xa8, 0x9d,		  0x21, 0x8a, 0xe6, 0x4d, 0xae, 0x47, 0xbf, 0x35 },		{ 0xcd, 0x63, 0xcb, 0x71, 0x95, 0x4a, 0x9f, 0x4e,		  0x48, 0xa5, 0x99, 0x4e, 0x37, 0xa0, 0x2b, 0xaf },		{ 0x46, 0xf8, 0x41, 0x6a },		{ 0xa5, 0x42, 0x11, 0xd5 },		{ 0xea, 0xe4, 0xbe, 0x82, 0x3a, 0xf9, 0xa0, 0x8b }	}, {		/* 3GPP TS 55.205 v6.0.0 - Test Set 2 */		{ 0xfe, 0xc8, 0x6b, 0xa6, 0xeb, 0x70, 0x7e, 0xd0,		  0x89, 0x05, 0x75, 0x7b, 0x1b, 0xb4, 0x4b, 0x8f },		{ 0x9f, 0x7c, 0x8d, 0x02, 0x1a, 0xcc, 0xf4, 0xdb,		  0x21, 0x3c, 0xcf, 0xf0, 0xc7, 0xf7, 0x1a, 0x6a },		{ 0x10, 0x06, 0x02, 0x0f, 0x0a, 0x47, 0x8b, 0xf6,

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -