📄 complex
字号:
template<typename _Tp> inline complex<_Tp> operator/(const complex<_Tp>& __x, const _Tp& __y) { complex<_Tp> __r = __x; __r /= __y; return __r; } template<typename _Tp> inline complex<_Tp> operator/(const _Tp& __x, const complex<_Tp>& __y) { complex<_Tp> __r = __x; __r /= __y; return __r; } //@} /// Return @a x. template<typename _Tp> inline complex<_Tp> operator+(const complex<_Tp>& __x) { return __x; } /// Return complex negation of @a x. template<typename _Tp> inline complex<_Tp> operator-(const complex<_Tp>& __x) { return complex<_Tp>(-__x.real(), -__x.imag()); } //@{ /// Return true if @a x is equal to @a y. template<typename _Tp> inline bool operator==(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() == __y.real() && __x.imag() == __y.imag(); } template<typename _Tp> inline bool operator==(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() == __y && __x.imag() == _Tp(); } template<typename _Tp> inline bool operator==(const _Tp& __x, const complex<_Tp>& __y) { return __x == __y.real() && _Tp() == __y.imag(); } //@} //@{ /// Return false if @a x is equal to @a y. template<typename _Tp> inline bool operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() != __y.real() || __x.imag() != __y.imag(); } template<typename _Tp> inline bool operator!=(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() != __y || __x.imag() != _Tp(); } template<typename _Tp> inline bool operator!=(const _Tp& __x, const complex<_Tp>& __y) { return __x != __y.real() || _Tp() != __y.imag(); } //@} /// Extraction operator for complex values. template<typename _Tp, typename _CharT, class _Traits> basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x) { _Tp __re_x, __im_x; _CharT __ch; __is >> __ch; if (__ch == '(') { __is >> __re_x >> __ch; if (__ch == ',') { __is >> __im_x >> __ch; if (__ch == ')') __x = complex<_Tp>(__re_x, __im_x); else __is.setstate(ios_base::failbit); } else if (__ch == ')') __x = __re_x; else __is.setstate(ios_base::failbit); } else { __is.putback(__ch); __is >> __re_x; __x = __re_x; } return __is; } /// Insertion operator for complex values. template<typename _Tp, typename _CharT, class _Traits> basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x) { basic_ostringstream<_CharT, _Traits> __s; __s.flags(__os.flags()); __s.imbue(__os.getloc()); __s.precision(__os.precision()); __s << '(' << __x.real() << ',' << __x.imag() << ')'; return __os << __s.str(); } // Values template<typename _Tp> inline _Tp& real(complex<_Tp>& __z) { return __z.real(); } template<typename _Tp> inline const _Tp& real(const complex<_Tp>& __z) { return __z.real(); } template<typename _Tp> inline _Tp& imag(complex<_Tp>& __z) { return __z.imag(); } template<typename _Tp> inline const _Tp& imag(const complex<_Tp>& __z) { return __z.imag(); } template<typename _Tp> inline _Tp abs(const complex<_Tp>& __z) { _Tp __x = __z.real(); _Tp __y = __z.imag(); const _Tp __s = std::max(abs(__x), abs(__y)); if (__s == _Tp()) // well ... return __s; __x /= __s; __y /= __s; return __s * sqrt(__x * __x + __y * __y); } template<typename _Tp> inline _Tp arg(const complex<_Tp>& __z) { return atan2(__z.imag(), __z.real()); } // 26.2.7/5: norm(__z) returns the squared magintude of __z. // As defined, norm() is -not- a norm is the common mathematical // sens used in numerics. The helper class _Norm_helper<> tries to // distinguish between builtin floating point and the rest, so as // to deliver an answer as close as possible to the real value. template<bool> struct _Norm_helper { template<typename _Tp> static inline _Tp _S_do_it(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return __x * __x + __y * __y; } }; template<> struct _Norm_helper<true> { template<typename _Tp> static inline _Tp _S_do_it(const complex<_Tp>& __z) { _Tp __res = std::abs(__z); return __res * __res; } }; template<typename _Tp> inline _Tp norm(const complex<_Tp>& __z) { return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCXX_FAST_MATH>::_S_do_it(__z); } template<typename _Tp> inline complex<_Tp> polar(const _Tp& __rho, const _Tp& __theta) { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); } template<typename _Tp> inline complex<_Tp> conj(const complex<_Tp>& __z) { return complex<_Tp>(__z.real(), -__z.imag()); } // Transcendentals template<typename _Tp> inline complex<_Tp> cos(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y)); } template<typename _Tp> inline complex<_Tp> cosh(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y)); } template<typename _Tp> inline complex<_Tp> exp(const complex<_Tp>& __z) { return std::polar(exp(__z.real()), __z.imag()); } template<typename _Tp> inline complex<_Tp> log(const complex<_Tp>& __z) { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); } template<typename _Tp> inline complex<_Tp> log10(const complex<_Tp>& __z) { return std::log(__z) / log(_Tp(10.0)); } template<typename _Tp> inline complex<_Tp> sin(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); } template<typename _Tp> inline complex<_Tp> sinh(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y)); } template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>& __z) { _Tp __x = __z.real(); _Tp __y = __z.imag(); if (__x == _Tp()) { _Tp __t = sqrt(abs(__y) / 2); return complex<_Tp>(__t, __y < _Tp() ? -__t : __t); } else { _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x))); _Tp __u = __t / 2; return __x > _Tp() ? complex<_Tp>(__u, __y / __t) : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u); } } template<typename _Tp> inline complex<_Tp> tan(const complex<_Tp>& __z) { return std::sin(__z) / std::cos(__z); } template<typename _Tp> inline complex<_Tp> tanh(const complex<_Tp>& __z) { return std::sinh(__z) / std::cosh(__z); } template<typename _Tp> inline complex<_Tp> pow(const complex<_Tp>& __z, int __n) { return std::__pow_helper(__z, __n); } template<typename _Tp> complex<_Tp> pow(const complex<_Tp>& __x, const _Tp& __y) { if (__x.imag() == _Tp() && __x.real() > _Tp()) return pow(__x.real(), __y); complex<_Tp> __t = std::log(__x); return std::polar(exp(__y * __t.real()), __y * __t.imag()); } template<typename _Tp> inline complex<_Tp> pow(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x)); } template<typename _Tp> inline complex<_Tp> pow(const _Tp& __x, const complex<_Tp>& __y) { return __x > _Tp() ? std::polar(pow(__x, __y.real()), __y.imag() * log(__x)) : std::pow(complex<_Tp>(__x, _Tp()), __y); } // 26.2.3 complex specializations // complex<float> specialization template<> class complex<float> { public: typedef float value_type; complex(float = 0.0f, float = 0.0f); explicit complex(const complex<double>&); explicit complex(const complex<long double>&); float& real(); const float& real() const; float& imag(); const float& imag() const; complex<float>& operator=(float); complex<float>& operator+=(float); complex<float>& operator-=(float); complex<float>& operator*=(float); complex<float>& operator/=(float); // Let's the compiler synthetize the copy and assignment // operator. It always does a pretty good job. // complex& operator= (const complex&); template<typename _Tp> complex<float>&operator=(const complex<_Tp>&); template<typename _Tp> complex<float>& operator+=(const complex<_Tp>&); template<class _Tp> complex<float>& operator-=(const complex<_Tp>&); template<class _Tp> complex<float>& operator*=(const complex<_Tp>&); template<class _Tp> complex<float>&operator/=(const complex<_Tp>&); private: typedef __complex__ float _ComplexT; _ComplexT _M_value; complex(_ComplexT __z) : _M_value(__z) { } friend class complex<double>; friend class complex<long double>; }; inline float& complex<float>::real() { return __real__ _M_value; } inline const float& complex<float>::real() const { return __real__ _M_value; } inline float& complex<float>::imag() { return __imag__ _M_value; } inline const float& complex<float>::imag() const { return __imag__ _M_value; } inline complex<float>::complex(float r, float i) { __real__ _M_value = r; __imag__ _M_value = i; } inline complex<float>& complex<float>::operator=(float __f) { __real__ _M_value = __f; __imag__ _M_value = 0.0f; return *this; } inline complex<float>& complex<float>::operator+=(float __f) { __real__ _M_value += __f; return *this; } inline complex<float>& complex<float>::operator-=(float __f) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -