⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex

📁 mingw32.rar
💻
📖 第 1 页 / 共 3 页
字号:
      template<typename _Tp>    inline complex<_Tp>    operator/(const complex<_Tp>& __x, const _Tp& __y)    {      complex<_Tp> __r = __x;      __r /= __y;      return __r;    }  template<typename _Tp>    inline complex<_Tp>    operator/(const _Tp& __x, const complex<_Tp>& __y)    {      complex<_Tp> __r = __x;      __r /= __y;      return __r;    }  //@}  ///  Return @a x.  template<typename _Tp>    inline complex<_Tp>    operator+(const complex<_Tp>& __x)    { return __x; }  ///  Return complex negation of @a x.  template<typename _Tp>    inline complex<_Tp>    operator-(const complex<_Tp>& __x)    {  return complex<_Tp>(-__x.real(), -__x.imag()); }  //@{  ///  Return true if @a x is equal to @a y.  template<typename _Tp>    inline bool    operator==(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return __x.real() == __y.real() && __x.imag() == __y.imag(); }  template<typename _Tp>    inline bool    operator==(const complex<_Tp>& __x, const _Tp& __y)    { return __x.real() == __y && __x.imag() == _Tp(); }  template<typename _Tp>    inline bool    operator==(const _Tp& __x, const complex<_Tp>& __y)    { return __x == __y.real() && _Tp() == __y.imag(); }  //@}  //@{  ///  Return false if @a x is equal to @a y.  template<typename _Tp>    inline bool    operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y)    { return __x.real() != __y.real() || __x.imag() != __y.imag(); }  template<typename _Tp>    inline bool    operator!=(const complex<_Tp>& __x, const _Tp& __y)    { return __x.real() != __y || __x.imag() != _Tp(); }  template<typename _Tp>    inline bool    operator!=(const _Tp& __x, const complex<_Tp>& __y)    { return __x != __y.real() || _Tp() != __y.imag(); }  //@}  ///  Extraction operator for complex values.  template<typename _Tp, typename _CharT, class _Traits>    basic_istream<_CharT, _Traits>&    operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x)    {      _Tp __re_x, __im_x;      _CharT __ch;      __is >> __ch;      if (__ch == '(') 	{	  __is >> __re_x >> __ch;	  if (__ch == ',') 	    {	      __is >> __im_x >> __ch;	      if (__ch == ')') 		__x = complex<_Tp>(__re_x, __im_x);	      else		__is.setstate(ios_base::failbit);	    }	  else if (__ch == ')') 	    __x = __re_x;	  else	    __is.setstate(ios_base::failbit);	}      else 	{	  __is.putback(__ch);	  __is >> __re_x;	  __x = __re_x;	}      return __is;    }  ///  Insertion operator for complex values.  template<typename _Tp, typename _CharT, class _Traits>    basic_ostream<_CharT, _Traits>&    operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)    {      basic_ostringstream<_CharT, _Traits> __s;      __s.flags(__os.flags());      __s.imbue(__os.getloc());      __s.precision(__os.precision());      __s << '(' << __x.real() << ',' << __x.imag() << ')';      return __os << __s.str();    }  // Values  template<typename _Tp>    inline _Tp&    real(complex<_Tp>& __z)    { return __z.real(); }      template<typename _Tp>    inline const _Tp&    real(const complex<_Tp>& __z)    { return __z.real(); }      template<typename _Tp>    inline _Tp&    imag(complex<_Tp>& __z)    { return __z.imag(); }      template<typename _Tp>    inline const _Tp&    imag(const complex<_Tp>& __z)    { return __z.imag(); }  template<typename _Tp>    inline _Tp    abs(const complex<_Tp>& __z)    {      _Tp __x = __z.real();      _Tp __y = __z.imag();      const _Tp __s = std::max(abs(__x), abs(__y));      if (__s == _Tp())  // well ...        return __s;      __x /= __s;       __y /= __s;      return __s * sqrt(__x * __x + __y * __y);    }  template<typename _Tp>    inline _Tp    arg(const complex<_Tp>& __z)    { return atan2(__z.imag(), __z.real()); }  // 26.2.7/5: norm(__z) returns the squared magintude of __z.  //     As defined, norm() is -not- a norm is the common mathematical  //     sens used in numerics.  The helper class _Norm_helper<> tries to  //     distinguish between builtin floating point and the rest, so as  //     to deliver an answer as close as possible to the real value.  template<bool>    struct _Norm_helper    {      template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {          const _Tp __x = __z.real();          const _Tp __y = __z.imag();          return __x * __x + __y * __y;        }    };  template<>    struct _Norm_helper<true>    {      template<typename _Tp>        static inline _Tp _S_do_it(const complex<_Tp>& __z)        {          _Tp __res = std::abs(__z);          return __res * __res;        }    };    template<typename _Tp>    inline _Tp    norm(const complex<_Tp>& __z)    {      return _Norm_helper<__is_floating<_Tp>::_M_type && !_GLIBCXX_FAST_MATH>::_S_do_it(__z);    }  template<typename _Tp>    inline complex<_Tp>    polar(const _Tp& __rho, const _Tp& __theta)    { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); }  template<typename _Tp>    inline complex<_Tp>    conj(const complex<_Tp>& __z)    { return complex<_Tp>(__z.real(), -__z.imag()); }    // Transcendentals  template<typename _Tp>    inline complex<_Tp>    cos(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp __y = __z.imag();      return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y));    }  template<typename _Tp>    inline complex<_Tp>    cosh(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp __y = __z.imag();      return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y));    }  template<typename _Tp>    inline complex<_Tp>    exp(const complex<_Tp>& __z)    { return std::polar(exp(__z.real()), __z.imag()); }  template<typename _Tp>    inline complex<_Tp>    log(const complex<_Tp>& __z)    { return complex<_Tp>(log(std::abs(__z)), std::arg(__z)); }  template<typename _Tp>    inline complex<_Tp>    log10(const complex<_Tp>& __z)    { return std::log(__z) / log(_Tp(10.0)); }  template<typename _Tp>    inline complex<_Tp>    sin(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp __y = __z.imag();      return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y));     }  template<typename _Tp>    inline complex<_Tp>    sinh(const complex<_Tp>& __z)    {      const _Tp __x = __z.real();      const _Tp  __y = __z.imag();      return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y));    }  template<typename _Tp>    complex<_Tp>    sqrt(const complex<_Tp>& __z)    {      _Tp __x = __z.real();      _Tp __y = __z.imag();      if (__x == _Tp())        {          _Tp __t = sqrt(abs(__y) / 2);          return complex<_Tp>(__t, __y < _Tp() ? -__t : __t);        }      else        {          _Tp __t = sqrt(2 * (std::abs(__z) + abs(__x)));          _Tp __u = __t / 2;          return __x > _Tp()            ? complex<_Tp>(__u, __y / __t)            : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u);        }    }  template<typename _Tp>    inline complex<_Tp>    tan(const complex<_Tp>& __z)    {      return std::sin(__z) / std::cos(__z);    }  template<typename _Tp>    inline complex<_Tp>    tanh(const complex<_Tp>& __z)    {      return std::sinh(__z) / std::cosh(__z);    }  template<typename _Tp>    inline complex<_Tp>    pow(const complex<_Tp>& __z, int __n)    {      return std::__pow_helper(__z, __n);    }  template<typename _Tp>    complex<_Tp>    pow(const complex<_Tp>& __x, const _Tp& __y)    {      if (__x.imag() == _Tp() && __x.real() > _Tp())        return pow(__x.real(), __y);      complex<_Tp> __t = std::log(__x);      return std::polar(exp(__y * __t.real()), __y * __t.imag());    }  template<typename _Tp>    inline complex<_Tp>    pow(const complex<_Tp>& __x, const complex<_Tp>& __y)    {      return __x == _Tp() ? _Tp() : std::exp(__y * std::log(__x));    }  template<typename _Tp>    inline complex<_Tp>    pow(const _Tp& __x, const complex<_Tp>& __y)    {      return __x > _Tp() ? std::polar(pow(__x, __y.real()),				      __y.imag() * log(__x))	                 : std::pow(complex<_Tp>(__x, _Tp()), __y);    }  // 26.2.3  complex specializations  // complex<float> specialization  template<> class complex<float>  {  public:    typedef float value_type;        complex(float = 0.0f, float = 0.0f);    explicit complex(const complex<double>&);    explicit complex(const complex<long double>&);    float& real();    const float& real() const;    float& imag();    const float& imag() const;    complex<float>& operator=(float);    complex<float>& operator+=(float);    complex<float>& operator-=(float);    complex<float>& operator*=(float);    complex<float>& operator/=(float);            // Let's the compiler synthetize the copy and assignment    // operator.  It always does a pretty good job.    // complex& operator= (const complex&);    template<typename _Tp>      complex<float>&operator=(const complex<_Tp>&);    template<typename _Tp>      complex<float>& operator+=(const complex<_Tp>&);    template<class _Tp>      complex<float>& operator-=(const complex<_Tp>&);    template<class _Tp>      complex<float>& operator*=(const complex<_Tp>&);    template<class _Tp>      complex<float>&operator/=(const complex<_Tp>&);  private:    typedef __complex__ float _ComplexT;    _ComplexT _M_value;    complex(_ComplexT __z) : _M_value(__z) { }            friend class complex<double>;    friend class complex<long double>;  };  inline float&  complex<float>::real()  { return __real__ _M_value; }  inline const float&  complex<float>::real() const  { return __real__ _M_value; }  inline float&  complex<float>::imag()  { return __imag__ _M_value; }  inline const float&  complex<float>::imag() const  { return __imag__ _M_value; }  inline  complex<float>::complex(float r, float i)  {    __real__ _M_value = r;    __imag__ _M_value = i;  }  inline complex<float>&  complex<float>::operator=(float __f)  {    __real__ _M_value = __f;    __imag__ _M_value = 0.0f;    return *this;  }  inline complex<float>&  complex<float>::operator+=(float __f)  {    __real__ _M_value += __f;    return *this;  }  inline complex<float>&  complex<float>::operator-=(float __f)  {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -