⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex

📁 mingw32.rar
💻
📖 第 1 页 / 共 3 页
字号:
// The template and inlines for the -*- C++ -*- complex number classes.// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005// Free Software Foundation, Inc.//// This file is part of the GNU ISO C++ Library.  This library is free// software; you can redistribute it and/or modify it under the// terms of the GNU General Public License as published by the// Free Software Foundation; either version 2, or (at your option)// any later version.// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU General Public License for more details.// You should have received a copy of the GNU General Public License along// with this library; see the file COPYING.  If not, write to the Free// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,// USA.// As a special exception, you may use this file as part of a free software// library without restriction.  Specifically, if other files instantiate// templates or use macros or inline functions from this file, or you compile// this file and link it with other files to produce an executable, this// file does not by itself cause the resulting executable to be covered by// the GNU General Public License.  This exception does not however// invalidate any other reasons why the executable file might be covered by// the GNU General Public License.//// ISO C++ 14882: 26.2  Complex Numbers// Note: this is not a conforming implementation.// Initially implemented by Ulrich Drepper <drepper@cygnus.com>// Improved by Gabriel Dos Reis <dosreis@cmla.ens-cachan.fr>///** @file complex *  This is a Standard C++ Library header.  You should @c #include this header *  in your programs, rather than any of the "st[dl]_*.h" implementation files. */#ifndef _GLIBCXX_COMPLEX#define _GLIBCXX_COMPLEX 1#pragma GCC system_header#include <bits/c++config.h>#include <bits/cpp_type_traits.h>#include <cmath>#include <sstream>namespace std{  // Forward declarations  template<typename _Tp> class complex;  template<> class complex<float>;  template<> class complex<double>;  template<> class complex<long double>;  ///  Return magnitude of @a z.  template<typename _Tp> _Tp abs(const complex<_Tp>&);  ///  Return phase angle of @a z.  template<typename _Tp> _Tp arg(const complex<_Tp>&);  ///  Return @a z magnitude squared.  template<typename _Tp> _Tp norm(const complex<_Tp>&);  ///  Return complex conjugate of @a z.  template<typename _Tp> complex<_Tp> conj(const complex<_Tp>&);  ///  Return complex with magnitude @a rho and angle @a theta.  template<typename _Tp> complex<_Tp> polar(const _Tp&, const _Tp& = 0);  // Transcendentals:  /// Return complex cosine of @a z.  template<typename _Tp> complex<_Tp> cos(const complex<_Tp>&);  /// Return complex hyperbolic cosine of @a z.  template<typename _Tp> complex<_Tp> cosh(const complex<_Tp>&);  /// Return complex base e exponential of @a z.  template<typename _Tp> complex<_Tp> exp(const complex<_Tp>&);  /// Return complex natural logarithm of @a z.  template<typename _Tp> complex<_Tp> log(const complex<_Tp>&);  /// Return complex base 10 logarithm of @a z.  template<typename _Tp> complex<_Tp> log10(const complex<_Tp>&);  /// Return complex cosine of @a z.  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, int);  /// Return @a x to the @a y'th power.  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, const _Tp&);  /// Return @a x to the @a y'th power.  template<typename _Tp> complex<_Tp> pow(const complex<_Tp>&, 					   const complex<_Tp>&);  /// Return @a x to the @a y'th power.  template<typename _Tp> complex<_Tp> pow(const _Tp&, const complex<_Tp>&);  /// Return complex sine of @a z.  template<typename _Tp> complex<_Tp> sin(const complex<_Tp>&);  /// Return complex hyperbolic sine of @a z.  template<typename _Tp> complex<_Tp> sinh(const complex<_Tp>&);  /// Return complex square root of @a z.  template<typename _Tp> complex<_Tp> sqrt(const complex<_Tp>&);  /// Return complex tangent of @a z.  template<typename _Tp> complex<_Tp> tan(const complex<_Tp>&);  /// Return complex hyperbolic tangent of @a z.  template<typename _Tp> complex<_Tp> tanh(const complex<_Tp>&);  //@}          // 26.2.2  Primary template class complex  /**   *  Template to represent complex numbers.   *   *  Specializations for float, double, and long double are part of the   *  library.  Results with any other type are not guaranteed.   *   *  @param  Tp  Type of real and imaginary values.  */  template<typename _Tp>    class complex    {    public:      /// Value typedef.      typedef _Tp value_type;            ///  Default constructor.  First parameter is x, second parameter is y.      ///  Unspecified parameters default to 0.      complex(const _Tp& = _Tp(), const _Tp & = _Tp());      // Lets the compiler synthesize the copy constructor         // complex (const complex<_Tp>&);      ///  Copy constructor.      template<typename _Up>        complex(const complex<_Up>&);      ///  Return real part of complex number.      _Tp& real();       ///  Return real part of complex number.      const _Tp& real() const;      ///  Return imaginary part of complex number.      _Tp& imag();      ///  Return imaginary part of complex number.      const _Tp& imag() const;      /// Assign this complex number to scalar @a t.      complex<_Tp>& operator=(const _Tp&);      /// Add @a t to this complex number.      complex<_Tp>& operator+=(const _Tp&);      /// Subtract @a t from this complex number.      complex<_Tp>& operator-=(const _Tp&);      /// Multiply this complex number by @a t.      complex<_Tp>& operator*=(const _Tp&);      /// Divide this complex number by @a t.      complex<_Tp>& operator/=(const _Tp&);      // Lets the compiler synthesize the      // copy and assignment operator      // complex<_Tp>& operator= (const complex<_Tp>&);      /// Assign this complex number to complex @a z.      template<typename _Up>        complex<_Tp>& operator=(const complex<_Up>&);      /// Add @a z to this complex number.      template<typename _Up>        complex<_Tp>& operator+=(const complex<_Up>&);      /// Subtract @a z from this complex number.      template<typename _Up>        complex<_Tp>& operator-=(const complex<_Up>&);      /// Multiply this complex number by @a z.      template<typename _Up>        complex<_Tp>& operator*=(const complex<_Up>&);      /// Divide this complex number by @a z.      template<typename _Up>        complex<_Tp>& operator/=(const complex<_Up>&);    private:      _Tp _M_real;      _Tp _M_imag;    };  template<typename _Tp>    inline _Tp&    complex<_Tp>::real() { return _M_real; }  template<typename _Tp>    inline const _Tp&    complex<_Tp>::real() const { return _M_real; }  template<typename _Tp>    inline _Tp&    complex<_Tp>::imag() { return _M_imag; }  template<typename _Tp>    inline const _Tp&    complex<_Tp>::imag() const { return _M_imag; }  template<typename _Tp>    inline     complex<_Tp>::complex(const _Tp& __r, const _Tp& __i)    : _M_real(__r), _M_imag(__i) { }  template<typename _Tp>    template<typename _Up>    inline     complex<_Tp>::complex(const complex<_Up>& __z)    : _M_real(__z.real()), _M_imag(__z.imag()) { }          template<typename _Tp>    complex<_Tp>&    complex<_Tp>::operator=(const _Tp& __t)    {     _M_real = __t;     _M_imag = _Tp();     return *this;    }   // 26.2.5/1  template<typename _Tp>    inline complex<_Tp>&    complex<_Tp>::operator+=(const _Tp& __t)    {      _M_real += __t;      return *this;    }  // 26.2.5/3  template<typename _Tp>    inline complex<_Tp>&    complex<_Tp>::operator-=(const _Tp& __t)    {      _M_real -= __t;      return *this;    }  // 26.2.5/5  template<typename _Tp>    complex<_Tp>&    complex<_Tp>::operator*=(const _Tp& __t)    {      _M_real *= __t;      _M_imag *= __t;      return *this;    }  // 26.2.5/7  template<typename _Tp>    complex<_Tp>&    complex<_Tp>::operator/=(const _Tp& __t)    {      _M_real /= __t;      _M_imag /= __t;      return *this;    }  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator=(const complex<_Up>& __z)    {      _M_real = __z.real();      _M_imag = __z.imag();      return *this;    }  // 26.2.5/9  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator+=(const complex<_Up>& __z)    {      _M_real += __z.real();      _M_imag += __z.imag();      return *this;    }  // 26.2.5/11  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator-=(const complex<_Up>& __z)    {      _M_real -= __z.real();      _M_imag -= __z.imag();      return *this;    }  // 26.2.5/13  // XXX: This is a grammar school implementation.  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator*=(const complex<_Up>& __z)    {      const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag();      _M_imag = _M_real * __z.imag() + _M_imag * __z.real();      _M_real = __r;      return *this;    }  // 26.2.5/15  // XXX: This is a grammar school implementation.  template<typename _Tp>    template<typename _Up>    complex<_Tp>&    complex<_Tp>::operator/=(const complex<_Up>& __z)    {      const _Tp __r =  _M_real * __z.real() + _M_imag * __z.imag();      const _Tp __n = std::norm(__z);      _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n;      _M_real = __r / __n;      return *this;    }      // Operators:  //@{  ///  Return new complex value @a x plus @a y.  template<typename _Tp>    inline complex<_Tp>    operator+(const complex<_Tp>& __x, const complex<_Tp>& __y)    {      complex<_Tp> __r = __x;      __r += __y;      return __r;    }  template<typename _Tp>    inline complex<_Tp>    operator+(const complex<_Tp>& __x, const _Tp& __y)    {      complex<_Tp> __r = __x;      __r.real() += __y;      return __r;    }  template<typename _Tp>    inline complex<_Tp>    operator+(const _Tp& __x, const complex<_Tp>& __y)    {      complex<_Tp> __r = __y;      __r.real() += __x;      return __r;    }  //@}  //@{  ///  Return new complex value @a x minus @a y.  template<typename _Tp>    inline complex<_Tp>    operator-(const complex<_Tp>& __x, const complex<_Tp>& __y)    {      complex<_Tp> __r = __x;      __r -= __y;      return __r;    }      template<typename _Tp>    inline complex<_Tp>    operator-(const complex<_Tp>& __x, const _Tp& __y)    {      complex<_Tp> __r = __x;      __r.real() -= __y;      return __r;    }  template<typename _Tp>    inline complex<_Tp>    operator-(const _Tp& __x, const complex<_Tp>& __y)    {      complex<_Tp> __r(__x, -__y.imag());      __r.real() -= __y.real();      return __r;    }  //@}  //@{  ///  Return new complex value @a x times @a y.  template<typename _Tp>    inline complex<_Tp>    operator*(const complex<_Tp>& __x, const complex<_Tp>& __y)    {      complex<_Tp> __r = __x;      __r *= __y;      return __r;    }  template<typename _Tp>    inline complex<_Tp>    operator*(const complex<_Tp>& __x, const _Tp& __y)    {      complex<_Tp> __r = __x;      __r *= __y;      return __r;    }  template<typename _Tp>    inline complex<_Tp>    operator*(const _Tp& __x, const complex<_Tp>& __y)    {      complex<_Tp> __r = __y;      __r *= __x;      return __r;    }  //@}  //@{  ///  Return new complex value @a x divided by @a y.  template<typename _Tp>    inline complex<_Tp>    operator/(const complex<_Tp>& __x, const complex<_Tp>& __y)    {      complex<_Tp> __r = __x;      __r /= __y;      return __r;    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -