⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rope

📁 mingw32.rar
💻
📖 第 1 页 / 共 5 页
字号:
                // should take an arbitrary iterator                // result has refcount 1.#       ifndef __GC          static _RopeLeaf* _S_destr_leaf_concat_char_iter                        (_RopeLeaf* __r, const _CharT* __iter, size_t __slen);          // A version that potentially clobbers __r if __r->_M_ref_count == 1.#       endif        private:        static size_t _S_char_ptr_len(const _CharT* __s);                        // slightly generalized strlen        rope(_RopeRep* __t, const allocator_type& __a = allocator_type())          : _Base(__t,__a) { }        // Copy __r to the _CharT buffer.        // Returns __buffer + __r->_M_size.        // Assumes that buffer is uninitialized.        static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);        // Again, with explicit starting position and length.        // Assumes that buffer is uninitialized.        static _CharT* _S_flatten(_RopeRep* __r,                                  size_t __start, size_t __len,                                  _CharT* __buffer);        static const unsigned long          _S_min_len[_Rope_constants::_S_max_rope_depth + 1];        static bool _S_is_balanced(_RopeRep* __r)                { return (__r->_M_size >= _S_min_len[__r->_M_depth]); }        static bool _S_is_almost_balanced(_RopeRep* __r)                { return (__r->_M_depth == 0 ||                          __r->_M_size >= _S_min_len[__r->_M_depth - 1]); }        static bool _S_is_roughly_balanced(_RopeRep* __r)                { return (__r->_M_depth <= 1 ||                          __r->_M_size >= _S_min_len[__r->_M_depth - 2]); }        // Assumes the result is not empty.        static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left,                                                     _RopeRep* __right)        {            _RopeRep* __result = _S_concat(__left, __right);            if (_S_is_balanced(__result)) __result->_M_is_balanced = true;            return __result;        }        // The basic rebalancing operation.  Logically copies the        // rope.  The result has refcount of 1.  The client will        // usually decrement the reference count of __r.        // The result is within height 2 of balanced by the above        // definition.        static _RopeRep* _S_balance(_RopeRep* __r);        // Add all unbalanced subtrees to the forest of balanceed trees.        // Used only by balance.        static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);        // Add __r to forest, assuming __r is already balanced.        static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);        // Print to stdout, exposing structure        static void _S_dump(_RopeRep* __r, int __indent = 0);        // Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.        static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);   public:        bool empty() const { return 0 == this->_M_tree_ptr; }        // Comparison member function.  This is public only for those        // clients that need a ternary comparison.  Others        // should use the comparison operators below.        int compare(const rope& __y) const {            return _S_compare(this->_M_tree_ptr, __y._M_tree_ptr);        }        rope(const _CharT* __s, const allocator_type& __a = allocator_type())        : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s),                                                 __a),__a)        { }        rope(const _CharT* __s, size_t __len,             const allocator_type& __a = allocator_type())        : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, __a), __a)        { }        // Should perhaps be templatized with respect to the iterator type        // and use Sequence_buffer.  (It should perhaps use sequence_buffer        // even now.)        rope(const _CharT *__s, const _CharT *__e,             const allocator_type& __a = allocator_type())        : _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, __a), __a)        { }        rope(const const_iterator& __s, const const_iterator& __e,             const allocator_type& __a = allocator_type())        : _Base(_S_substring(__s._M_root, __s._M_current_pos,                             __e._M_current_pos), __a)        { }        rope(const iterator& __s, const iterator& __e,             const allocator_type& __a = allocator_type())        : _Base(_S_substring(__s._M_root, __s._M_current_pos,                             __e._M_current_pos), __a)        { }        rope(_CharT __c, const allocator_type& __a = allocator_type())        : _Base(__a)        {	    _CharT* __buf = this->_Data_allocate(_S_rounded_up_size(1));            std::_Construct(__buf, __c);            try {                this->_M_tree_ptr = _S_new_RopeLeaf(__buf, 1, __a);            }            catch(...)	      {		_RopeRep::__STL_FREE_STRING(__buf, 1, __a);		__throw_exception_again;	      }        }        rope(size_t __n, _CharT __c,             const allocator_type& __a = allocator_type());        rope(const allocator_type& __a = allocator_type())        : _Base(0, __a) {}        // Construct a rope from a function that can compute its members        rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,             const allocator_type& __a = allocator_type())            : _Base(__a)        {            this->_M_tree_ptr = (0 == __len) ?               0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);        }        rope(const rope& __x, const allocator_type& __a = allocator_type())        : _Base(__x._M_tree_ptr, __a)        {            _S_ref(this->_M_tree_ptr);        }      ~rope() throw()       { _S_unref(this->_M_tree_ptr); }        rope& operator=(const rope& __x)        {            _RopeRep* __old = this->_M_tree_ptr;            this->_M_tree_ptr = __x._M_tree_ptr;            _S_ref(this->_M_tree_ptr);            _S_unref(__old);            return *this;        }        void clear()        {            _S_unref(this->_M_tree_ptr);            this->_M_tree_ptr = 0;        }        void push_back(_CharT __x)        {            _RopeRep* __old = this->_M_tree_ptr;            this->_M_tree_ptr	      = _S_destr_concat_char_iter(this->_M_tree_ptr, &__x, 1);            _S_unref(__old);        }        void pop_back()        {            _RopeRep* __old = this->_M_tree_ptr;            this->_M_tree_ptr =              _S_substring(this->_M_tree_ptr,			   0,			   this->_M_tree_ptr->_M_size - 1);            _S_unref(__old);        }        _CharT back() const        {            return _S_fetch(this->_M_tree_ptr, this->_M_tree_ptr->_M_size - 1);        }        void push_front(_CharT __x)        {            _RopeRep* __old = this->_M_tree_ptr;            _RopeRep* __left =              __STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, this->get_allocator());            try {              this->_M_tree_ptr = _S_concat(__left, this->_M_tree_ptr);              _S_unref(__old);              _S_unref(__left);            }            catch(...)	      {		_S_unref(__left);		__throw_exception_again;	      }        }        void pop_front()        {            _RopeRep* __old = this->_M_tree_ptr;            this->_M_tree_ptr	      = _S_substring(this->_M_tree_ptr, 1, this->_M_tree_ptr->_M_size);            _S_unref(__old);        }        _CharT front() const        {            return _S_fetch(this->_M_tree_ptr, 0);        }        void balance()        {            _RopeRep* __old = this->_M_tree_ptr;            this->_M_tree_ptr = _S_balance(this->_M_tree_ptr);            _S_unref(__old);        }        void copy(_CharT* __buffer) const {            _Destroy(__buffer, __buffer + size());            _S_flatten(this->_M_tree_ptr, __buffer);        }        // This is the copy function from the standard, but        // with the arguments reordered to make it consistent with the        // rest of the interface.        // Note that this guaranteed not to compile if the draft standard        // order is assumed.        size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const        {            size_t __size = size();            size_t __len = (__pos + __n > __size? __size - __pos : __n);            _Destroy(__buffer, __buffer + __len);            _S_flatten(this->_M_tree_ptr, __pos, __len, __buffer);            return __len;        }        // Print to stdout, exposing structure.  May be useful for        // performance debugging.        void dump() {            _S_dump(this->_M_tree_ptr);        }        // Convert to 0 terminated string in new allocated memory.        // Embedded 0s in the input do not terminate the copy.        const _CharT* c_str() const;        // As above, but lso use the flattened representation as the        // the new rope representation.        const _CharT* replace_with_c_str();        // Reclaim memory for the c_str generated flattened string.        // Intentionally undocumented, since it's hard to say when this        // is safe for multiple threads.        void delete_c_str () {            if (0 == this->_M_tree_ptr) return;            if (_Rope_constants::_S_leaf == this->_M_tree_ptr->_M_tag &&                ((_RopeLeaf*)this->_M_tree_ptr)->_M_data ==                      this->_M_tree_ptr->_M_c_string) {                // Representation shared                return;            }#           ifndef __GC              this->_M_tree_ptr->_M_free_c_string();#           endif            this->_M_tree_ptr->_M_c_string = 0;        }        _CharT operator[] (size_type __pos) const {            return _S_fetch(this->_M_tree_ptr, __pos);        }        _CharT at(size_type __pos) const {           // if (__pos >= size()) throw out_of_range;  // XXX           return (*this)[__pos];        }        const_iterator begin() const {            return(const_iterator(this->_M_tree_ptr, 0));        }        // An easy way to get a const iterator from a non-const container.        const_iterator const_begin() const {            return(const_iterator(this->_M_tree_ptr, 0));        }        const_iterator end() const {            return(const_iterator(this->_M_tree_ptr, size()));        }        const_iterator const_end() const {            return(const_iterator(this->_M_tree_ptr, size()));        }        size_type size() const {            return(0 == this->_M_tree_ptr? 0 : this->_M_tree_ptr->_M_size);        }        size_type length() const {            return size();        }        size_type max_size() const {            return _S_min_len[_Rope_constants::_S_max_rope_depth - 1] - 1;            //  Guarantees that the result can be sufficirntly            //  balanced.  Longer ropes will probably still work,            //  but it's harder to make guarantees.        }        typedef reverse_iterator<const_iterator> const_reverse_iterator;        const_reverse_iterator rbegin() const {            return const_reverse_iterator(end());        }        const_reverse_iterator const_rbegin() const {            return const_reverse_iterator(end());        }        const_reverse_iterator rend() const {            return const_reverse_iterator(begin());        }        const_reverse_iterator const_rend() const {            return const_reverse_iterator(begin());        }        template<class _CharT2, class _Alloc2>        friend rope<_CharT2,_Alloc2>        operator+ (const rope<_CharT2,_Alloc2>& __left,                   const rope<_CharT2,_Alloc2>& __right);        template<class _CharT2, class _Alloc2>        friend rope<_CharT2,_Alloc2>        operator+ (const rope<_CharT2,_Alloc2>& __left,                   const _CharT2* __right);        template<class _CharT2, class _Alloc2>        friend rope<_CharT2,_Alloc2>        operator+ (const rope<_CharT2,_Alloc2>& __left, _CharT2 __right);        // The symmetric cases are intentionally omitted, since they're presumed        // to be less common, and we don't handle them as well.        // The following should really be templatized.        // The first

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -