📄 bitmap_allocator.h
字号:
} static unsigned int *_S_get_free_list(unsigned int __sz) throw (std::bad_alloc) {#if defined __GTHREADS _Lock __bfl_lock(&_S_bfl_mutex);#endif _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), __sz, _LT_pointer_compare()); if (__temp == _S_free_list.end() || !_S_should_i_give (**__temp, __sz)) { //We hold the lock because the OOM_Handler is a stateless //entity. _OOM_handler __set_handler(_BFL_type::_S_clear); unsigned int *__ret_val = reinterpret_cast<unsigned int*> (operator new (__sz + sizeof(unsigned int))); *__ret_val = __sz; return ++__ret_val; } else { unsigned int* __ret_val = *__temp; _S_free_list.erase (__temp); return ++__ret_val; } } //This function just clears the internal Free List, and gives back //all the memory to the OS. static void _S_clear() {#if defined __GTHREADS _Lock __bfl_lock(&_S_bfl_mutex);#endif _FLIter __iter = _S_free_list.begin(); while (__iter != _S_free_list.end()) { operator delete((void*)*__iter); ++__iter; } _S_free_list.clear(); } };#if defined __GTHREADS _Mutex _BA_free_list_store::_S_bfl_mutex;#endif std::vector<unsigned int*> _BA_free_list_store::_S_free_list; template <typename _Tp> class bitmap_allocator; // specialize for void: template <> class bitmap_allocator<void> { public: typedef void* pointer; typedef const void* const_pointer; // reference-to-void members are impossible. typedef void value_type; template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; }; }; template <typename _Tp> class bitmap_allocator : private _BA_free_list_store { public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; }; private: static const unsigned int _Bits_Per_Byte = 8; static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte; static inline void _S_bit_allocate(unsigned int *__pbmap, unsigned int __pos) throw() { unsigned int __mask = 1 << __pos; __mask = ~__mask; *__pbmap &= __mask; } static inline void _S_bit_free(unsigned int *__pbmap, unsigned int __pos) throw() { unsigned int __mask = 1 << __pos; *__pbmap |= __mask; } static inline void *_S_memory_get(size_t __sz) throw (std::bad_alloc) { return operator new(__sz); } static inline void _S_memory_put(void *__vptr) throw () { operator delete(__vptr); } typedef typename std::pair<pointer, pointer> _Block_pair; typedef typename __gnu_cxx::new_allocator<_Block_pair> _BPVec_allocator_type; typedef typename std::vector<_Block_pair, _BPVec_allocator_type> _BPVector;#if defined CHECK_FOR_ERRORS //Complexity: O(lg(N)). Where, N is the number of block of size //sizeof(value_type). static void _S_check_for_free_blocks() throw() { typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF; _FFF __fff; typedef typename _BPVector::iterator _BPiter; _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff)); assert(__bpi == _S_mem_blocks.end()); }#endif //Complexity: O(1), but internally depends upon the complexity of //the function _BA_free_list_store::_S_get_free_list. The part //where the bitmap headers are written is of worst case complexity: //O(X),where X is the number of blocks of size sizeof(value_type) //within the newly acquired block. Having a tight bound. static void _S_refill_pool() throw (std::bad_alloc) {#if defined CHECK_FOR_ERRORS _S_check_for_free_blocks();#endif const unsigned int __num_bit_maps = _S_block_size / _Bits_Per_Block; const unsigned int __size_to_allocate = sizeof(unsigned int) + _S_block_size * sizeof(value_type) + __num_bit_maps*sizeof(unsigned int); unsigned int *__temp = reinterpret_cast<unsigned int*>(_BA_free_list_store::_S_get_free_list(__size_to_allocate)); *__temp = 0; ++__temp; //The Header information goes at the Beginning of the Block. _Block_pair __bp = std::make_pair(reinterpret_cast<pointer>(__temp + __num_bit_maps), reinterpret_cast<pointer>(__temp + __num_bit_maps) + _S_block_size - 1); //Fill the Vector with this information. _S_mem_blocks.push_back(__bp); unsigned int __bit_mask = 0; //0 Indicates all Allocated. __bit_mask = ~__bit_mask; //1 Indicates all Free. for (unsigned int __i = 0; __i < __num_bit_maps; ++__i) __temp[__i] = __bit_mask; //On some implementations, operator new might throw bad_alloc, or //malloc might fail if the size passed is too large, therefore, we //limit the size passed to malloc or operator new. _S_block_size *= 2; } static _BPVector _S_mem_blocks; static unsigned int _S_block_size; static __gnu_cxx::__aux_balloc::_Bit_map_counter<pointer, _BPVec_allocator_type> _S_last_request; static typename _BPVector::size_type _S_last_dealloc_index;#if defined __GTHREADS static _Mutex _S_mut;#endif //Complexity: Worst case complexity is O(N), but that is hardly ever //hit. if and when this particular case is encountered, the next few //cases are guaranteed to have a worst case complexity of O(1)! //That's why this function performs very well on the average. you //can consider this function to be having a complexity refrred to //commonly as: Amortized Constant time. static pointer _S_allocate_single_object() {#if defined __GTHREADS _Lock __bit_lock(&_S_mut);#endif //The algorithm is something like this: The last_requst variable //points to the last accessed Bit Map. When such a condition //occurs, we try to find a free block in the current bitmap, or //succeeding bitmaps until the last bitmap is reached. If no free //block turns up, we resort to First Fit method. //WARNING: Do not re-order the condition in the while statement //below, because it relies on C++'s short-circuit //evaluation. The return from _S_last_request->_M_get() will NOT //be dereferenceable if _S_last_request->_M_finished() returns //true. This would inevitibly lead to a NULL pointer dereference //if tinkered with. while (_S_last_request._M_finished() == false && (*(_S_last_request._M_get()) == 0)) { _S_last_request.operator++(); } if (__builtin_expect(_S_last_request._M_finished() == true, false)) { //Fall Back to First Fit algorithm. typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF; _FFF __fff; typedef typename _BPVector::iterator _BPiter; _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff)); if (__bpi != _S_mem_blocks.end()) { //Search was successful. Ok, now mark the first bit from //the right as 0, meaning Allocated. This bit is obtained //by calling _M_get() on __fff. unsigned int __nz_bit = _Bit_scan_forward(*__fff._M_get()); _S_bit_allocate(__fff._M_get(), __nz_bit); _S_last_request._M_reset(__bpi - _S_mem_blocks.begin()); //Now, get the address of the bit we marked as allocated. pointer __ret_val = __bpi->first + __fff._M_offset() + __nz_bit; unsigned int *__puse_count = reinterpret_cast<unsigned int*>(__bpi->first) - (__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(*__bpi) + 1); ++(*__puse_count); return __ret_val; } else { //Search was unsuccessful. We Add more memory to the pool //by calling _S_refill_pool(). _S_refill_pool(); //_M_Reset the _S_last_request structure to the first free //block's bit map. _S_last_request._M_reset(_S_mem_blocks.size() - 1); //Now, mark that bit as allocated. } } //_S_last_request holds a pointer to a valid bit map, that points //to a free block in memory. unsigned int __nz_bit = _Bit_scan_forward(*_S_last_request._M_get()); _S_bit_allocate(_S_last_request._M_get(), __nz_bit); pointer __ret_val = _S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit; unsigned int *__puse_count = reinterpret_cast<unsigned int*> (_S_mem_blocks[_S_last_request._M_where()].first) - (__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[_S_last_request._M_where()]) + 1); ++(*__puse_count); return __ret_val; } //Complexity: O(lg(N)), but the worst case is hit quite often! I //need to do something about this. I'll be able to work on it, only //when I have some solid figures from a few real apps. static void _S_deallocate_single_object(pointer __p) throw() {#if defined __GTHREADS _Lock __bit_lock(&_S_mut);#endif typedef typename _BPVector::iterator _Iterator; typedef typename _BPVector::difference_type _Difference_type; _Difference_type __diff; int __displacement; assert(_S_last_dealloc_index >= 0); if (__gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)(_S_mem_blocks[_S_last_dealloc_index])) { assert(_S_last_dealloc_index <= _S_mem_blocks.size() - 1); //Initial Assumption was correct! __diff = _S_last_dealloc_index; __displacement = __p - _S_mem_blocks[__diff].first; } else { _Iterator _iter = (std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), __gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p))); assert(_iter != _S_mem_blocks.end()); __diff = _iter - _S_mem_blocks.begin(); __displacement = __p - _S_mem_blocks[__diff].first; _S_last_dealloc_index = __diff; } //Get the position of the iterator that has been found. const unsigned int __rotate = __displacement % _Bits_Per_Block; unsigned int *__bit_mapC = reinterpret_cast<unsigned int*>(_S_mem_blocks[__diff].first) - 1; __bit_mapC -= (__displacement / _Bits_Per_Block); _S_bit_free(__bit_mapC, __rotate); unsigned int *__puse_count = reinterpret_cast<unsigned int*> (_S_mem_blocks[__diff].first) - (__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[__diff]) + 1); assert(*__puse_count != 0); --(*__puse_count); if (__builtin_expect(*__puse_count == 0, false)) { _S_block_size /= 2; //We may safely remove this block. _Block_pair __bp = _S_mem_blocks[__diff]; _S_insert_free_list(__puse_count); _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff); //We reset the _S_last_request variable to reflect the erased //block. We do this to protect future requests after the last //block has been removed from a particular memory Chunk, //which in turn has been returned to the free list, and //hence had been erased from the vector, so the size of the //vector gets reduced by 1. if ((_Difference_type)_S_last_request._M_where() >= __diff--) { _S_last_request._M_reset(__diff); // assert(__diff >= 0); } //If the Index into the vector of the region of memory that //might hold the next address that will be passed to //deallocated may have been invalidated due to the above //erase procedure being called on the vector, hence we try //to restore this invariant too. if (_S_last_dealloc_index >= _S_mem_blocks.size()) { _S_last_dealloc_index =(__diff != -1 ? __diff : 0); assert(_S_last_dealloc_index >= 0); } } } public: bitmap_allocator() throw() { } bitmap_allocator(const bitmap_allocator&) { } template <typename _Tp1> bitmap_allocator(const bitmap_allocator<_Tp1>&) throw() { } ~bitmap_allocator() throw() { } //Complexity: O(1), but internally the complexity depends upon the //complexity of the function(s) _S_allocate_single_object and //_S_memory_get. pointer allocate(size_type __n) { if (__builtin_expect(__n == 1, true)) return _S_allocate_single_object(); else return reinterpret_cast<pointer>(_S_memory_get(__n * sizeof(value_type))); } //Complexity: Worst case complexity is O(N) where N is the number of //blocks of size sizeof(value_type) within the free lists that the //allocator holds. However, this worst case is hit only when the //user supplies a bogus argument to hint. If the hint argument is //sensible, then the complexity drops to O(lg(N)), and in extreme //cases, even drops to as low as O(1). So, if the user supplied //argument is good, then this function performs very well. pointer allocate(size_type __n, typename bitmap_allocator<void>::const_pointer) { return allocate(__n); } void deallocate(pointer __p, size_type __n) throw() { if (__builtin_expect(__n == 1, true)) _S_deallocate_single_object(__p); else _S_memory_put(__p); } pointer address(reference r) const { return &r; } const_pointer address(const_reference r) const { return &r; } size_type max_size(void) const throw() { return (size_type()-1)/sizeof(value_type); } void construct (pointer p, const_reference __data) { ::new(p) value_type(__data); } void destroy (pointer p) { p->~value_type(); } }; template <typename _Tp> typename bitmap_allocator<_Tp>::_BPVector bitmap_allocator<_Tp>::_S_mem_blocks; template <typename _Tp> unsigned int bitmap_allocator<_Tp>::_S_block_size = bitmap_allocator<_Tp>::_Bits_Per_Block; template <typename _Tp> typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type bitmap_allocator<_Tp>::_S_last_dealloc_index = 0; template <typename _Tp> __gnu_cxx::__aux_balloc::_Bit_map_counter <typename bitmap_allocator<_Tp>::pointer, typename bitmap_allocator<_Tp>::_BPVec_allocator_type> bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);#if defined __GTHREADS template <typename _Tp> __gnu_cxx::_Mutex bitmap_allocator<_Tp>::_S_mut;#endif template <typename _Tp1, typename _Tp2> bool operator== (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw() { return true; } template <typename _Tp1, typename _Tp2> bool operator!= (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw() { return false; }}#endif //_BITMAP_ALLOCATOR_H
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -