⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bitmap_allocator.h

📁 mingw32.rar
💻 H
📖 第 1 页 / 共 2 页
字号:
    }        static unsigned int *_S_get_free_list(unsigned int __sz) throw (std::bad_alloc)    {#if defined __GTHREADS      _Lock __bfl_lock(&_S_bfl_mutex);#endif      _FLIter __temp = std::lower_bound(_S_free_list.begin(), _S_free_list.end(), 					__sz, _LT_pointer_compare());      if (__temp == _S_free_list.end() || !_S_should_i_give (**__temp, __sz))	{	  //We hold the lock because the OOM_Handler is a stateless	  //entity.	  _OOM_handler __set_handler(_BFL_type::_S_clear);	  unsigned int *__ret_val = reinterpret_cast<unsigned int*>	    (operator new (__sz + sizeof(unsigned int)));	  *__ret_val = __sz;	  return ++__ret_val;	}      else	{	  unsigned int* __ret_val = *__temp;	  _S_free_list.erase (__temp);	  return ++__ret_val;	}    }    //This function just clears the internal Free List, and gives back    //all the memory to the OS.    static void _S_clear()    {#if defined __GTHREADS      _Lock __bfl_lock(&_S_bfl_mutex);#endif      _FLIter __iter = _S_free_list.begin();      while (__iter != _S_free_list.end())	{	  operator delete((void*)*__iter);	  ++__iter;	}      _S_free_list.clear();    }  };#if defined __GTHREADS  _Mutex _BA_free_list_store::_S_bfl_mutex;#endif  std::vector<unsigned int*> _BA_free_list_store::_S_free_list;  template <typename _Tp> class bitmap_allocator;  // specialize for void:  template <> class bitmap_allocator<void> {  public:    typedef void*       pointer;    typedef const void* const_pointer;    //  reference-to-void members are impossible.    typedef void  value_type;    template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };  };  template <typename _Tp> class bitmap_allocator : private _BA_free_list_store {  public:    typedef size_t    size_type;    typedef ptrdiff_t difference_type;    typedef _Tp*        pointer;    typedef const _Tp*  const_pointer;    typedef _Tp&        reference;    typedef const _Tp&  const_reference;    typedef _Tp         value_type;    template <typename _Tp1> struct rebind { typedef bitmap_allocator<_Tp1> other; };  private:    static const unsigned int _Bits_Per_Byte = 8;    static const unsigned int _Bits_Per_Block = sizeof(unsigned int) * _Bits_Per_Byte;    static inline void _S_bit_allocate(unsigned int *__pbmap, unsigned int __pos) throw()    {      unsigned int __mask = 1 << __pos;      __mask = ~__mask;      *__pbmap &= __mask;    }      static inline void _S_bit_free(unsigned int *__pbmap, unsigned int __pos) throw()    {      unsigned int __mask = 1 << __pos;      *__pbmap |= __mask;    }    static inline void *_S_memory_get(size_t __sz) throw (std::bad_alloc)    {      return operator new(__sz);    }    static inline void _S_memory_put(void *__vptr) throw ()    {      operator delete(__vptr);    }    typedef typename std::pair<pointer, pointer> _Block_pair;    typedef typename __gnu_cxx::new_allocator<_Block_pair> _BPVec_allocator_type;    typedef typename std::vector<_Block_pair, _BPVec_allocator_type> _BPVector;#if defined CHECK_FOR_ERRORS    //Complexity: O(lg(N)). Where, N is the number of block of size    //sizeof(value_type).    static void _S_check_for_free_blocks() throw()    {      typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;      _FFF __fff;      typedef typename _BPVector::iterator _BPiter;      _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 				   __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));      assert(__bpi == _S_mem_blocks.end());    }#endif    //Complexity: O(1), but internally depends upon the complexity of    //the function _BA_free_list_store::_S_get_free_list. The part    //where the bitmap headers are written is of worst case complexity:    //O(X),where X is the number of blocks of size sizeof(value_type)    //within the newly acquired block. Having a tight bound.    static void _S_refill_pool() throw (std::bad_alloc)    {#if defined CHECK_FOR_ERRORS      _S_check_for_free_blocks();#endif      const unsigned int __num_bit_maps = _S_block_size / _Bits_Per_Block;      const unsigned int __size_to_allocate = sizeof(unsigned int) + 	_S_block_size * sizeof(value_type) + __num_bit_maps*sizeof(unsigned int);      unsigned int *__temp = 	reinterpret_cast<unsigned int*>(_BA_free_list_store::_S_get_free_list(__size_to_allocate));      *__temp = 0;      ++__temp;      //The Header information goes at the Beginning of the Block.      _Block_pair __bp = std::make_pair(reinterpret_cast<pointer>(__temp + __num_bit_maps), 				       reinterpret_cast<pointer>(__temp + __num_bit_maps) 					+ _S_block_size - 1);      //Fill the Vector with this information.      _S_mem_blocks.push_back(__bp);      unsigned int __bit_mask = 0; //0 Indicates all Allocated.      __bit_mask = ~__bit_mask; //1 Indicates all Free.      for (unsigned int __i = 0; __i < __num_bit_maps; ++__i)	__temp[__i] = __bit_mask;      //On some implementations, operator new might throw bad_alloc, or      //malloc might fail if the size passed is too large, therefore, we      //limit the size passed to malloc or operator new.      _S_block_size *= 2;    }    static _BPVector _S_mem_blocks;    static unsigned int _S_block_size;    static __gnu_cxx::__aux_balloc::_Bit_map_counter<pointer, _BPVec_allocator_type> _S_last_request;    static typename _BPVector::size_type _S_last_dealloc_index;#if defined __GTHREADS    static _Mutex _S_mut;#endif    //Complexity: Worst case complexity is O(N), but that is hardly ever    //hit. if and when this particular case is encountered, the next few    //cases are guaranteed to have a worst case complexity of O(1)!    //That's why this function performs very well on the average. you    //can consider this function to be having a complexity refrred to    //commonly as: Amortized Constant time.    static pointer _S_allocate_single_object()    {#if defined __GTHREADS      _Lock __bit_lock(&_S_mut);#endif      //The algorithm is something like this: The last_requst variable      //points to the last accessed Bit Map. When such a condition      //occurs, we try to find a free block in the current bitmap, or      //succeeding bitmaps until the last bitmap is reached. If no free      //block turns up, we resort to First Fit method.      //WARNING: Do not re-order the condition in the while statement      //below, because it relies on C++'s short-circuit      //evaluation. The return from _S_last_request->_M_get() will NOT      //be dereferenceable if _S_last_request->_M_finished() returns      //true. This would inevitibly lead to a NULL pointer dereference      //if tinkered with.      while (_S_last_request._M_finished() == false && (*(_S_last_request._M_get()) == 0))	{	  _S_last_request.operator++();	}      if (__builtin_expect(_S_last_request._M_finished() == true, false))	{	  //Fall Back to First Fit algorithm.	  typedef typename __gnu_cxx::__aux_balloc::_Ffit_finder<pointer, _BPVec_allocator_type> _FFF;	  _FFF __fff;	  typedef typename _BPVector::iterator _BPiter;	  _BPiter __bpi = std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 				      __gnu_cxx::__aux_balloc::_Functor_Ref<_FFF>(__fff));	  if (__bpi != _S_mem_blocks.end())	    {	      //Search was successful. Ok, now mark the first bit from	      //the right as 0, meaning Allocated. This bit is obtained	      //by calling _M_get() on __fff.	      unsigned int __nz_bit = _Bit_scan_forward(*__fff._M_get());	      _S_bit_allocate(__fff._M_get(), __nz_bit);	      _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());	      //Now, get the address of the bit we marked as allocated.	      pointer __ret_val = __bpi->first + __fff._M_offset() + __nz_bit;	      unsigned int *__puse_count = reinterpret_cast<unsigned int*>(__bpi->first) - 		(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(*__bpi) + 1);	      ++(*__puse_count);	      return __ret_val;	    }	  else	    {	      //Search was unsuccessful. We Add more memory to the pool	      //by calling _S_refill_pool().	      _S_refill_pool();	      //_M_Reset the _S_last_request structure to the first free	      //block's bit map.	      _S_last_request._M_reset(_S_mem_blocks.size() - 1);	      //Now, mark that bit as allocated.	    }	}      //_S_last_request holds a pointer to a valid bit map, that points      //to a free block in memory.      unsigned int __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());      _S_bit_allocate(_S_last_request._M_get(), __nz_bit);      pointer __ret_val = _S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit;      unsigned int *__puse_count = reinterpret_cast<unsigned int*>	(_S_mem_blocks[_S_last_request._M_where()].first) - 	(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[_S_last_request._M_where()]) + 1);      ++(*__puse_count);      return __ret_val;    }    //Complexity: O(lg(N)), but the worst case is hit quite often! I    //need to do something about this. I'll be able to work on it, only    //when I have some solid figures from a few real apps.    static void _S_deallocate_single_object(pointer __p) throw()    {#if defined __GTHREADS      _Lock __bit_lock(&_S_mut);#endif      typedef typename _BPVector::iterator _Iterator;      typedef typename _BPVector::difference_type _Difference_type;      _Difference_type __diff;      int __displacement;      assert(_S_last_dealloc_index >= 0);      if (__gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)(_S_mem_blocks[_S_last_dealloc_index]))	{	  assert(_S_last_dealloc_index <= _S_mem_blocks.size() - 1);	  //Initial Assumption was correct!	  __diff = _S_last_dealloc_index;	  __displacement = __p - _S_mem_blocks[__diff].first;	}      else	{	  _Iterator _iter = (std::find_if(_S_mem_blocks.begin(), _S_mem_blocks.end(), 					  __gnu_cxx::__aux_balloc::_Inclusive_between<pointer>(__p)));	  assert(_iter != _S_mem_blocks.end());	  __diff = _iter - _S_mem_blocks.begin();	  __displacement = __p - _S_mem_blocks[__diff].first;	  _S_last_dealloc_index = __diff;	}      //Get the position of the iterator that has been found.      const unsigned int __rotate = __displacement % _Bits_Per_Block;      unsigned int *__bit_mapC = reinterpret_cast<unsigned int*>(_S_mem_blocks[__diff].first) - 1;      __bit_mapC -= (__displacement / _Bits_Per_Block);            _S_bit_free(__bit_mapC, __rotate);      unsigned int *__puse_count = reinterpret_cast<unsigned int*>	(_S_mem_blocks[__diff].first) - 	(__gnu_cxx::__aux_balloc::__balloc_num_bit_maps(_S_mem_blocks[__diff]) + 1);      assert(*__puse_count != 0);      --(*__puse_count);      if (__builtin_expect(*__puse_count == 0, false))	{	  _S_block_size /= 2;	  	  //We may safely remove this block.	  _Block_pair __bp = _S_mem_blocks[__diff];	  _S_insert_free_list(__puse_count);	  _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);	  //We reset the _S_last_request variable to reflect the erased	  //block. We do this to protect future requests after the last	  //block has been removed from a particular memory Chunk,	  //which in turn has been returned to the free list, and	  //hence had been erased from the vector, so the size of the	  //vector gets reduced by 1.	  if ((_Difference_type)_S_last_request._M_where() >= __diff--)	    {	      _S_last_request._M_reset(__diff);	      //	      assert(__diff >= 0);	    }	  //If the Index into the vector of the region of memory that	  //might hold the next address that will be passed to	  //deallocated may have been invalidated due to the above	  //erase procedure being called on the vector, hence we try	  //to restore this invariant too.	  if (_S_last_dealloc_index >= _S_mem_blocks.size())	    {	      _S_last_dealloc_index =(__diff != -1 ? __diff : 0);	      assert(_S_last_dealloc_index >= 0);	    }	}    }  public:    bitmap_allocator() throw()    { }    bitmap_allocator(const bitmap_allocator&) { }    template <typename _Tp1> bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()    { }    ~bitmap_allocator() throw()    { }    //Complexity: O(1), but internally the complexity depends upon the    //complexity of the function(s) _S_allocate_single_object and    //_S_memory_get.    pointer allocate(size_type __n)    {      if (__builtin_expect(__n == 1, true))	return _S_allocate_single_object();      else	return reinterpret_cast<pointer>(_S_memory_get(__n * sizeof(value_type)));    }    //Complexity: Worst case complexity is O(N) where N is the number of    //blocks of size sizeof(value_type) within the free lists that the    //allocator holds. However, this worst case is hit only when the    //user supplies a bogus argument to hint. If the hint argument is    //sensible, then the complexity drops to O(lg(N)), and in extreme    //cases, even drops to as low as O(1). So, if the user supplied    //argument is good, then this function performs very well.    pointer allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)    {      return allocate(__n);    }    void deallocate(pointer __p, size_type __n) throw()    {      if (__builtin_expect(__n == 1, true))	_S_deallocate_single_object(__p);      else	_S_memory_put(__p);    }    pointer address(reference r) const { return &r; }    const_pointer address(const_reference r) const { return &r; }    size_type max_size(void) const throw() { return (size_type()-1)/sizeof(value_type); }    void construct (pointer p, const_reference __data)    {      ::new(p) value_type(__data);    }    void destroy (pointer p)    {      p->~value_type();    }  };  template <typename _Tp>  typename bitmap_allocator<_Tp>::_BPVector bitmap_allocator<_Tp>::_S_mem_blocks;  template <typename _Tp>  unsigned int bitmap_allocator<_Tp>::_S_block_size = bitmap_allocator<_Tp>::_Bits_Per_Block;  template <typename _Tp>  typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type   bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;  template <typename _Tp>  __gnu_cxx::__aux_balloc::_Bit_map_counter   <typename bitmap_allocator<_Tp>::pointer, typename bitmap_allocator<_Tp>::_BPVec_allocator_type>   bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);#if defined __GTHREADS  template <typename _Tp>  __gnu_cxx::_Mutex  bitmap_allocator<_Tp>::_S_mut;#endif  template <typename _Tp1, typename _Tp2>  bool operator== (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()  {    return true;  }    template <typename _Tp1, typename _Tp2>  bool operator!= (const bitmap_allocator<_Tp1>&, const bitmap_allocator<_Tp2>&) throw()  {    return false;  }}#endif //_BITMAP_ALLOCATOR_H

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -