📄 valarray_before.h
字号:
// The template and inlines for the -*- C++ -*- internal _Meta class.
// Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
// Written by Gabriel Dos Reis <Gabriel.Dos-Reis@cmla.ens-cachan.fr>
/** @file valarray_meta.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _VALARRAY_BEFORE_H
#define _VALARRAY_BEFORE_H 1
#pragma GCC system_header
#include <bits/slice_array.h>
namespace std
{
//
// Implementing a loosened valarray return value is tricky.
// First we need to meet 26.3.1/3: we should not add more than
// two levels of template nesting. Therefore we resort to template
// template to "flatten" loosened return value types.
// At some point we use partial specialization to remove one level
// template nesting due to _Expr<>
//
// This class is NOT defined. It doesn't need to.
template<typename _Tp1, typename _Tp2> class _Constant;
// Implementations of unary functions applied to valarray<>s.
// I use hard-coded object functions here instead of a generic
// approach like pointers to function:
// 1) correctness: some functions take references, others values.
// we can't deduce the correct type afterwards.
// 2) efficiency -- object functions can be easily inlined
// 3) be Koenig-lookup-friendly
struct __abs
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return abs(__t); }
};
struct __cos
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return cos(__t); }
};
struct __acos
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return acos(__t); }
};
struct __cosh
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return cosh(__t); }
};
struct __sin
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return sin(__t); }
};
struct __asin
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return asin(__t); }
};
struct __sinh
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return sinh(__t); }
};
struct __tan
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return tan(__t); }
};
struct __atan
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return atan(__t); }
};
struct __tanh
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return tanh(__t); }
};
struct __exp
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return exp(__t); }
};
struct __log
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return log(__t); }
};
struct __log10
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return log10(__t); }
};
struct __sqrt
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return sqrt(__t); }
};
// In the past, we used to tailor operator applications semantics
// to the specialization of standard function objects (i.e. plus<>, etc.)
// That is incorrect. Therefore we provide our own surrogates.
struct __unary_plus
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return +__t; }
};
struct __negate
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return -__t; }
};
struct __bitwise_not
{
template<typename _Tp>
_Tp operator()(const _Tp& __t) const { return ~__t; }
};
struct __plus
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x + __y; }
};
struct __minus
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x - __y; }
};
struct __multiplies
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x * __y; }
};
struct __divides
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x / __y; }
};
struct __modulus
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x % __y; }
};
struct __bitwise_xor
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x ^ __y; }
};
struct __bitwise_and
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x & __y; }
};
struct __bitwise_or
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x | __y; }
};
struct __shift_left
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x << __y; }
};
struct __shift_right
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x >> __y; }
};
struct __logical_and
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x && __y; }
};
struct __logical_or
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x || __y; }
};
struct __logical_not
{
template<typename _Tp>
bool operator()(const _Tp& __x) const { return !__x; }
};
struct __equal_to
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x == __y; }
};
struct __not_equal_to
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x != __y; }
};
struct __less
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x < __y; }
};
struct __greater
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x > __y; }
};
struct __less_equal
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x <= __y; }
};
struct __greater_equal
{
template<typename _Tp>
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x >= __y; }
};
// The few binary functions we miss.
struct __atan2
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return atan2(__x, __y); }
};
struct __pow
{
template<typename _Tp>
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return pow(__x, __y); }
};
// We need these bits in order to recover the return type of
// some functions/operators now that we're no longer using
// function templates.
template<typename, typename _Tp>
struct __fun
{
typedef _Tp result_type;
};
// several specializations for relational operators.
template<typename _Tp>
struct __fun<__logical_not, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__logical_and, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__logical_or, _Tp>
{
typedef bool result_type;
};
template<typename _Tp>
struct __fun<__less, _Tp>
{
typedef bool result_type;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -