📄 xmmintrin.h
字号:
static __inline void_MM_SET_ROUNDING_MODE (unsigned int __mode){ _mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | __mode);}static __inline void_MM_SET_FLUSH_ZERO_MODE (unsigned int __mode){ _mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | __mode);}/* Create a vector with element 0 as *P and the rest zero. */static __inline __m128_mm_load_ss (float const *__P){ return (__m128) __builtin_ia32_loadss (__P);}/* Create a vector with all four elements equal to *P. */static __inline __m128_mm_load1_ps (float const *__P){ __v4sf __tmp = __builtin_ia32_loadss (__P); return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,0,0,0));}static __inline __m128_mm_load_ps1 (float const *__P){ return _mm_load1_ps (__P);}/* Load four SPFP values from P. The address must be 16-byte aligned. */static __inline __m128_mm_load_ps (float const *__P){ return (__m128) __builtin_ia32_loadaps (__P);}/* Load four SPFP values from P. The address need not be 16-byte aligned. */static __inline __m128_mm_loadu_ps (float const *__P){ return (__m128) __builtin_ia32_loadups (__P);}/* Load four SPFP values in reverse order. The address must be aligned. */static __inline __m128_mm_loadr_ps (float const *__P){ __v4sf __tmp = __builtin_ia32_loadaps (__P); return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,1,2,3));}/* Create a vector with element 0 as F and the rest zero. */static __inline __m128_mm_set_ss (float __F){ return (__m128) __builtin_ia32_loadss (&__F);}/* Create a vector with all four elements equal to F. */static __inline __m128_mm_set1_ps (float __F){ __v4sf __tmp = __builtin_ia32_loadss (&__F); return (__m128) __builtin_ia32_shufps (__tmp, __tmp, _MM_SHUFFLE (0,0,0,0));}static __inline __m128_mm_set_ps1 (float __F){ return _mm_set1_ps (__F);}/* Create the vector [Z Y X W]. */static __inline __m128_mm_set_ps (const float __Z, const float __Y, const float __X, const float __W){ return (__v4sf) {__W, __X, __Y, __Z};}/* Create the vector [W X Y Z]. */static __inline __m128_mm_setr_ps (float __Z, float __Y, float __X, float __W){ return _mm_set_ps (__W, __X, __Y, __Z);}/* Create a vector of zeros. */static __inline __m128_mm_setzero_ps (void){ return (__m128) __builtin_ia32_setzerops ();}/* Stores the lower SPFP value. */static __inline void_mm_store_ss (float *__P, __m128 __A){ __builtin_ia32_storess (__P, (__v4sf)__A);}/* Store the lower SPFP value across four words. */static __inline void_mm_store1_ps (float *__P, __m128 __A){ __v4sf __va = (__v4sf)__A; __v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,0,0,0)); __builtin_ia32_storeaps (__P, __tmp);}static __inline void_mm_store_ps1 (float *__P, __m128 __A){ _mm_store1_ps (__P, __A);}/* Store four SPFP values. The address must be 16-byte aligned. */static __inline void_mm_store_ps (float *__P, __m128 __A){ __builtin_ia32_storeaps (__P, (__v4sf)__A);}/* Store four SPFP values. The address need not be 16-byte aligned. */static __inline void_mm_storeu_ps (float *__P, __m128 __A){ __builtin_ia32_storeups (__P, (__v4sf)__A);}/* Store four SPFP values in reverse order. The address must be aligned. */static __inline void_mm_storer_ps (float *__P, __m128 __A){ __v4sf __va = (__v4sf)__A; __v4sf __tmp = __builtin_ia32_shufps (__va, __va, _MM_SHUFFLE (0,1,2,3)); __builtin_ia32_storeaps (__P, __tmp);}/* Sets the low SPFP value of A from the low value of B. */static __inline __m128_mm_move_ss (__m128 __A, __m128 __B){ return (__m128) __builtin_ia32_movss ((__v4sf)__A, (__v4sf)__B);}/* Extracts one of the four words of A. The selector N must be immediate. */#if 0static __inline int_mm_extract_pi16 (__m64 __A, int __N){ return __builtin_ia32_pextrw ((__v4hi)__A, __N);}static __inline int_m_pextrw (__m64 __A, int __N){ return _mm_extract_pi16 (__A, __N);}#else#define _mm_extract_pi16(A, N) \ __builtin_ia32_pextrw ((__v4hi)(A), (N))#define _m_pextrw(A, N) _mm_extract_pi16((A), (N))#endif/* Inserts word D into one of four words of A. The selector N must be immediate. */#if 0static __inline __m64_mm_insert_pi16 (__m64 __A, int __D, int __N){ return (__m64)__builtin_ia32_pinsrw ((__v4hi)__A, __D, __N);}static __inline __m64_m_pinsrw (__m64 __A, int __D, int __N){ return _mm_insert_pi16 (__A, __D, __N);}#else#define _mm_insert_pi16(A, D, N) \ ((__m64) __builtin_ia32_pinsrw ((__v4hi)(A), (D), (N)))#define _m_pinsrw(A, D, N) _mm_insert_pi16((A), (D), (N))#endif/* Compute the element-wise maximum of signed 16-bit values. */static __inline __m64_mm_max_pi16 (__m64 __A, __m64 __B){ return (__m64) __builtin_ia32_pmaxsw ((__v4hi)__A, (__v4hi)__B);}static __inline __m64_m_pmaxsw (__m64 __A, __m64 __B){ return _mm_max_pi16 (__A, __B);}/* Compute the element-wise maximum of unsigned 8-bit values. */static __inline __m64_mm_max_pu8 (__m64 __A, __m64 __B){ return (__m64) __builtin_ia32_pmaxub ((__v8qi)__A, (__v8qi)__B);}static __inline __m64_m_pmaxub (__m64 __A, __m64 __B){ return _mm_max_pu8 (__A, __B);}/* Compute the element-wise minimum of signed 16-bit values. */static __inline __m64_mm_min_pi16 (__m64 __A, __m64 __B){ return (__m64) __builtin_ia32_pminsw ((__v4hi)__A, (__v4hi)__B);}static __inline __m64_m_pminsw (__m64 __A, __m64 __B){ return _mm_min_pi16 (__A, __B);}/* Compute the element-wise minimum of unsigned 8-bit values. */static __inline __m64_mm_min_pu8 (__m64 __A, __m64 __B){ return (__m64) __builtin_ia32_pminub ((__v8qi)__A, (__v8qi)__B);}static __inline __m64_m_pminub (__m64 __A, __m64 __B){ return _mm_min_pu8 (__A, __B);}/* Create an 8-bit mask of the signs of 8-bit values. */static __inline int_mm_movemask_pi8 (__m64 __A){ return __builtin_ia32_pmovmskb ((__v8qi)__A);}static __inline int_m_pmovmskb (__m64 __A){ return _mm_movemask_pi8 (__A);}/* Multiply four unsigned 16-bit values in A by four unsigned 16-bit values in B and produce the high 16 bits of the 32-bit results. */static __inline __m64_mm_mulhi_pu16 (__m64 __A, __m64 __B){ return (__m64) __builtin_ia32_pmulhuw ((__v4hi)__A, (__v4hi)__B);}static __inline __m64_m_pmulhuw (__m64 __A, __m64 __B){ return _mm_mulhi_pu16 (__A, __B);}/* Return a combination of the four 16-bit values in A. The selector must be an immediate. */#if 0static __inline __m64_mm_shuffle_pi16 (__m64 __A, int __N){ return (__m64) __builtin_ia32_pshufw ((__v4hi)__A, __N);}static __inline __m64_m_pshufw (__m64 __A, int __N){ return _mm_shuffle_pi16 (__A, __N);}#else#define _mm_shuffle_pi16(A, N) \ ((__m64) __builtin_ia32_pshufw ((__v4hi)(A), (N)))#define _m_pshufw(A, N) _mm_shuffle_pi16 ((A), (N))#endif/* Conditionally store byte elements of A into P. The high bit of each byte in the selector N determines whether the corresponding byte from A is stored. */static __inline void_mm_maskmove_si64 (__m64 __A, __m64 __N, char *__P){ __builtin_ia32_maskmovq ((__v8qi)__A, (__v8qi)__N, __P);}static __inline void_m_maskmovq (__m64 __A, __m64 __N, char *__P){ _mm_maskmove_si64 (__A, __N, __P);}/* Compute the rounded averages of the unsigned 8-bit values in A and B. */static __inline __m64_mm_avg_pu8 (__m64 __A, __m64 __B){ return (__m64) __builtin_ia32_pavgb ((__v8qi)__A, (__v8qi)__B);}static __inline __m64_m_pavgb (__m64 __A, __m64 __B){ return _mm_avg_pu8 (__A, __B);}/* Compute the rounded averages of the unsigned 16-bit values in A and B. */static __inline __m64_mm_avg_pu16 (__m64 __A, __m64 __B){ return (__m64) __builtin_ia32_pavgw ((__v4hi)__A, (__v4hi)__B);}static __inline __m64_m_pavgw (__m64 __A, __m64 __B){ return _mm_avg_pu16 (__A, __B);}/* Compute the sum of the absolute differences of the unsigned 8-bit values in A and B. Return the value in the lower 16-bit word; the upper words are cleared. */static __inline __m64_mm_sad_pu8 (__m64 __A, __m64 __B){ return (__m64) __builtin_ia32_psadbw ((__v8qi)__A, (__v8qi)__B);}static __inline __m64_m_psadbw (__m64 __A, __m64 __B){ return _mm_sad_pu8 (__A, __B);}/* Loads one cache line from address P to a location "closer" to the processor. The selector I specifies the type of prefetch operation. */#if 0static __inline void_mm_prefetch (void *__P, enum _mm_hint __I){ __builtin_prefetch (__P, 0, __I);}#else#define _mm_prefetch(P, I) \ __builtin_prefetch ((P), 0, (I))#endif/* Stores the data in A to the address P without polluting the caches. */static __inline void_mm_stream_pi (__m64 *__P, __m64 __A){ __builtin_ia32_movntq ((unsigned long long *)__P, (unsigned long long)__A);}/* Likewise. The address must be 16-byte aligned. */static __inline void_mm_stream_ps (float *__P, __m128 __A){ __builtin_ia32_movntps (__P, (__v4sf)__A);}/* Guarantees that every preceding store is globally visible before any subsequent store. */static __inline void_mm_sfence (void){ __builtin_ia32_sfence ();}/* The execution of the next instruction is delayed by an implementation specific amount of time. The instruction does not modify the architectural state. */static __inline void_mm_pause (void){ __asm__ __volatile__ ("rep; nop" : : );}/* Transpose the 4x4 matrix composed of row[0-3]. */#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \do { \ __v4sf __r0 = (row0), __r1 = (row1), __r2 = (row2), __r3 = (row3); \ __v4sf __t0 = __builtin_ia32_shufps (__r0, __r1, 0x44); \ __v4sf __t2 = __builtin_ia32_shufps (__r0, __r1, 0xEE); \ __v4sf __t1 = __builtin_ia32_shufps (__r2, __r3, 0x44); \ __v4sf __t3 = __builtin_ia32_shufps (__r2, __r3, 0xEE); \ (row0) = __builtin_ia32_shufps (__t0, __t1, 0x88); \ (row1) = __builtin_ia32_shufps (__t0, __t1, 0xDD); \ (row2) = __builtin_ia32_shufps (__t2, __t3, 0x88); \ (row3) = __builtin_ia32_shufps (__t2, __t3, 0xDD); \} while (0)/* For backward source compatibility. */#include <emmintrin.h>#endif /* __SSE__ */#endif /* _XMMINTRIN_H_INCLUDED */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -