⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dl2k.c

📁 linux和2410结合开发 用他可以生成2410所需的zImage文件
💻 C
📖 第 1 页 / 共 3 页
字号:
/*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver *//*    Copyright (c) 2001 by D-Link Corporation    Written by Edward Peng.<edward_peng@dlink.com.tw>    Created 03-May-2001, base on Linux' sundance.c.    This program is free software; you can redistribute it and/or modify    it under the terms of the GNU General Public License as published by    the Free Software Foundation; either version 2 of the License, or    (at your option) any later version.*//*    Rev		Date		Description    ==========================================================================    0.01	2001/05/03	Created DL2000-based linux driver    0.02	2001/05/21	Added VLAN and hardware checksum support.    1.00	2001/06/26	Added jumbo frame support.    1.01	2001/08/21	Added two parameters, rx_coalesce and rx_timeout.    1.02	2001/10/08	Supported fiber media.    				Added flow control parameters.    1.03	2001/10/12	Changed the default media to 1000mbps_fd for     				the fiber devices.    1.04	2001/11/08	Fixed Tx stopped when tx very busy.    1.05	2001/11/22	Fixed Tx stopped when unidirectional tx busy.    1.06	2001/12/13	Fixed disconnect bug at 10Mbps mode.    				Fixed tx_full flag incorrect.				Added tx_coalesce paramter.    1.07	2002/01/03	Fixed miscount of RX frame error.    1.08	2002/01/17	Fixed the multicast bug. */#include "dl2k.h"static char version[] __devinitdata =    KERN_INFO "D-Link DL2000-based linux driver v1.08 2002/01/17\n";#define MAX_UNITS 8static int mtu[MAX_UNITS];static int vlan[MAX_UNITS];static int jumbo[MAX_UNITS];static char *media[MAX_UNITS];static int tx_flow[MAX_UNITS];static int rx_flow[MAX_UNITS];static int copy_thresh;static int rx_coalesce = DEFAULT_RXC;static int rx_timeout = DEFAULT_RXT;	static int tx_coalesce = DEFAULT_TXC;	MODULE_AUTHOR ("Edward Peng");MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");MODULE_LICENSE("GPL");MODULE_PARM (mtu, "1-" __MODULE_STRING (MAX_UNITS) "i");MODULE_PARM (media, "1-" __MODULE_STRING (MAX_UNITS) "s");MODULE_PARM (vlan, "1-" __MODULE_STRING (MAX_UNITS) "i");MODULE_PARM (jumbo, "1-" __MODULE_STRING (MAX_UNITS) "i");MODULE_PARM (tx_flow, "1-" __MODULE_STRING (MAX_UNITS) "i");MODULE_PARM (rx_flow, "1-" __MODULE_STRING (MAX_UNITS) "i");MODULE_PARM (copy_thresh, "i");MODULE_PARM (rx_coalesce, "i");	/* Rx frame count each interrupt */MODULE_PARM (rx_timeout, "i");	/* Rx DMA wait time in 64ns increments */MODULE_PARM (tx_coalesce, "i"); /* HW xmit count each TxComplete [1-8] *//* Enable the default interrupts */#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxComplete| \       UpdateStats | LinkEvent)#define EnableInt() \writew(DEFAULT_INTR, ioaddr + IntEnable)static int max_intrloop = 50;static int multicast_filter_limit = 0x40;static int rio_open (struct net_device *dev);static void tx_timeout (struct net_device *dev);static void alloc_list (struct net_device *dev);static int start_xmit (struct sk_buff *skb, struct net_device *dev);static void rio_interrupt (int irq, void *dev_instance, struct pt_regs *regs);static void tx_error (struct net_device *dev, int tx_status);static int receive_packet (struct net_device *dev);static void rio_error (struct net_device *dev, int int_status);static int change_mtu (struct net_device *dev, int new_mtu);static void set_multicast (struct net_device *dev);static struct net_device_stats *get_stats (struct net_device *dev);static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);static int rio_close (struct net_device *dev);static int find_miiphy (struct net_device *dev);static int parse_eeprom (struct net_device *dev);static int read_eeprom (long ioaddr, int eep_addr);static unsigned get_crc (unsigned char *p, int len);static int mii_wait_link (struct net_device *dev, int wait);static int mii_set_media (struct net_device *dev);static int mii_get_media (struct net_device *dev);static int mii_set_media_pcs (struct net_device *dev);static int mii_get_media_pcs (struct net_device *dev);static int mii_read (struct net_device *dev, int phy_addr, int reg_num);static int mii_write (struct net_device *dev, int phy_addr, int reg_num,		      u16 data);#ifdef RIO_DEBUGstatic int rio_ioctl_ext (struct net_device *dev, struct ioctl_data *iodata);#endifstatic int __devinitrio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent){	struct net_device *dev;	struct netdev_private *np;	static int card_idx;	int chip_idx = ent->driver_data;	int err, irq = pdev->irq;	long ioaddr;	static int version_printed;	void *ring_space;	dma_addr_t ring_dma;	if (!version_printed++)		printk ("%s", version);	err = pci_enable_device (pdev);	if (err)		return err;	err = pci_request_regions (pdev, "dl2k");	if (err)		goto err_out_disable;	pci_set_master (pdev);	dev = alloc_etherdev (sizeof (*np));	if (!dev) {		err = -ENOMEM;		goto err_out_res;	}	SET_MODULE_OWNER (dev);#ifdef USE_IO_OPS	ioaddr = pci_resource_start (pdev, 0);#else	ioaddr = pci_resource_start (pdev, 1);	ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);	if (!ioaddr) {		err = -ENOMEM;		goto err_out_dev;	}#endif	dev->base_addr = ioaddr;	dev->irq = irq;	np = dev->priv;	np->chip_id = chip_idx;	np->pdev = pdev;	spin_lock_init (&np->lock);	/* Parse manual configuration */	np->an_enable = 1;	if (card_idx < MAX_UNITS) {		if (media[card_idx] != NULL) {			np->an_enable = 0;			if (strcmp (media[card_idx], "auto") == 0 ||			    strcmp (media[card_idx], "autosense") == 0 || 			    strcmp (media[card_idx], "0") == 0 ) {				np->an_enable = 2; 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||			    strcmp (media[card_idx], "4") == 0) {				np->speed = 100;				np->full_duplex = 1;			} else if (strcmp (media[card_idx], "100mbps_hd") == 0				   || strcmp (media[card_idx], "3") == 0) {				np->speed = 100;				np->full_duplex = 0;			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||				   strcmp (media[card_idx], "2") == 0) {				np->speed = 10;				np->full_duplex = 1;			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||				   strcmp (media[card_idx], "1") == 0) {				np->speed = 10;				np->full_duplex = 0;			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||				 strcmp (media[card_idx], "6") == 0) {				np->speed=1000;				np->full_duplex=1;			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||				 strcmp (media[card_idx], "5") == 0) {				np->speed = 1000;				np->full_duplex = 0;			} else {				np->an_enable = 1;			}		}		if (jumbo[card_idx] != 0) {			np->jumbo = 1;			dev->mtu = MAX_JUMBO;		} else {			np->jumbo = 0;			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)				dev->mtu = mtu[card_idx];		}		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?		    vlan[card_idx] : 0;		if (rx_coalesce != 0 && rx_timeout != 0) {			np->rx_coalesce = rx_coalesce;			np->rx_timeout = rx_timeout;			np->coalesce = 1;		}		np->tx_flow = (tx_flow[card_idx]) ? 1 : 0;		np->rx_flow = (rx_flow[card_idx]) ? 1 : 0;		if (tx_coalesce < 1)			tx_coalesce = 1;		if (tx_coalesce > 8)			tx_coalesce = 8;	}	dev->open = &rio_open;	dev->hard_start_xmit = &start_xmit;	dev->stop = &rio_close;	dev->get_stats = &get_stats;	dev->set_multicast_list = &set_multicast;	dev->do_ioctl = &rio_ioctl;	dev->tx_timeout = &tx_timeout;	dev->watchdog_timeo = TX_TIMEOUT;	dev->change_mtu = &change_mtu;#if 0	dev->features = NETIF_F_IP_CSUM;#endif	pci_set_drvdata (pdev, dev);	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);	if (!ring_space)		goto err_out_iounmap;	np->tx_ring = (struct netdev_desc *) ring_space;	np->tx_ring_dma = ring_dma;	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);	if (!ring_space)		goto err_out_unmap_tx;	np->rx_ring = (struct netdev_desc *) ring_space;	np->rx_ring_dma = ring_dma;	/* Parse eeprom data */	parse_eeprom (dev);	/* Find PHY address */	err = find_miiphy (dev);	if (err)		goto err_out_unmap_rx;		/* Fiber device? */	np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;	/* Set media and reset PHY */	if (np->phy_media) {		/* default 1000mbps_fd for fiber deivices */		if (np->an_enable == 1) {			np->an_enable = 0;			np->speed = 1000;			np->full_duplex = 1;		} else if (np->an_enable == 2) {			np->an_enable = 1;		}		mii_set_media_pcs (dev);	} else {		/* Auto-Negotiation is mandatory for 1000BASE-T,		   IEEE 802.3ab Annex 28D page 14 */		if (np->speed == 1000)			np->an_enable = 1;		mii_set_media (dev);	}	/* Reset all logic functions */	writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,		ioaddr + ASICCtrl + 2);	err = register_netdev (dev);	if (err)		goto err_out_unmap_rx;	card_idx++;	printk (KERN_INFO "%s: %s, %02x:%02x:%02x:%02x:%02x:%02x, IRQ %d\n",		dev->name, np->name,		dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],		dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], irq);	return 0;      err_out_unmap_rx:	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);      err_out_unmap_tx:	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);      err_out_iounmap:#ifndef USE_IO_OPS	iounmap ((void *) ioaddr);      err_out_dev:#endif	kfree (dev);      err_out_res:	pci_release_regions (pdev);      err_out_disable:	pci_disable_device (pdev);	return err;}intfind_miiphy (struct net_device *dev){	int i, phy_found = 0;	struct netdev_private *np;	long ioaddr;	np = dev->priv;	ioaddr = dev->base_addr;	np->phy_addr = 1;	for (i = 31; i >= 0; i--) {		int mii_status = mii_read (dev, i, 1);		if (mii_status != 0xffff && mii_status != 0x0000) {			np->phy_addr = i;			phy_found++;		}	}	if (!phy_found) {		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);		return -ENODEV;	}	return 0;}intparse_eeprom (struct net_device *dev){	int i, j;	long ioaddr = dev->base_addr;	u8 sromdata[256];	u8 *psib;	u32 crc;	PSROM_t psrom = (PSROM_t) sromdata;	struct netdev_private *np = dev->priv;	int cid, next;	/* Read eeprom */	for (i = 0; i < 128; i++) {		((u16 *) sromdata)[i] = le16_to_cpu (read_eeprom (ioaddr, i));	}	/* Check CRC */	crc = ~get_crc (sromdata, 256 - 4);	if (psrom->crc != crc) {		printk (KERN_ERR "%s: EEPROM data CRC error.\n", dev->name);		return -1;	}	/* Set MAC address */	for (i = 0; i < 6; i++)		dev->dev_addr[i] = psrom->mac_addr[i];	/* Parse Software Infomation Block */	i = 0x30;	psib = (u8 *) sromdata;	do {		cid = psib[i++];		next = psib[i++];		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {			printk (KERN_ERR "Cell data error\n");			return -1;		}		switch (cid) {		case 0:	/* Format version */			break;		case 1:	/* End of cell */			return 0;		case 2:	/* Duplex Polarity */			np->duplex_polarity = psib[i];			writeb (readb (ioaddr + PhyCtrl) | psib[i],				ioaddr + PhyCtrl);			break;		case 3:	/* Wake Polarity */			np->wake_polarity = psib[i];			break;		case 9:	/* Adapter description */			j = (next - i > 255) ? 255 : next - i;			memcpy (np->name, &(psib[i]), j);			break;		case 4:		case 5:		case 6:		case 7:		case 8:	/* Reversed */			break;		default:	/* Unknown cell */			return -1;		}		i = next;	} while (1);	return 0;}static intrio_open (struct net_device *dev){	struct netdev_private *np = dev->priv;	long ioaddr = dev->base_addr;	int i;	i = request_irq (dev->irq, &rio_interrupt, SA_SHIRQ, dev->name, dev);	if (i)		return i;	/* DebugCtrl bit 4, 5, 9 must set */	writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);	/* Jumbo frame */	if (np->jumbo != 0)		writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);	alloc_list (dev);	/* Get station address */	for (i = 0; i < 6; i++)		writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);	set_multicast (dev);	if (np->coalesce) {		writel (np->rx_coalesce | np->rx_timeout << 16,			ioaddr + RxDMAIntCtrl);	}	/* Set RIO to poll every N*320nsec. */	writeb (0xff, ioaddr + RxDMAPollPeriod);	writeb (0xff, ioaddr + TxDMAPollPeriod);	netif_start_queue (dev);	writel (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl);	/* VLAN supported */	if (np->vlan) {		/* priority field in RxDMAIntCtrl  */		writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10, 			ioaddr + RxDMAIntCtrl);		/* VLANId */		writew (np->vlan, ioaddr + VLANId);		/* Length/Type should be 0x8100 */		writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.		   VLAN information tagged by TFC' VID, CFI fields. */		writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,			ioaddr + MACCtrl);	}	/* Enable default interrupts */	EnableInt ();	/* clear statistics */	get_stats (dev);	return 0;}static voidtx_timeout (struct net_device *dev){	struct netdev_private *np = dev->priv;	long ioaddr = dev->base_addr;	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",		dev->name, readl (ioaddr + TxStatus));	/* Free used tx skbuffs */	for (; np->cur_tx - np->old_tx > 0; np->old_tx++) {		int entry = np->old_tx % TX_RING_SIZE;		struct sk_buff *skb;		if (!(np->tx_ring[entry].status & TFDDone))			break;		skb = np->tx_skbuff[entry];		pci_unmap_single (np->pdev,				  np->tx_ring[entry].fraginfo,				  skb->len, PCI_DMA_TODEVICE);		dev_kfree_skb_irq (skb);		np->tx_skbuff[entry] = 0;	}	dev->if_port = 0;	dev->trans_start = jiffies;	np->stats.tx_errors++;	/* If the ring is no longer full, clear tx_full and 	   call netif_wake_queue() */	if (np->tx_full && np->cur_tx - np->old_tx < TX_QUEUE_LEN - 1) {		np->tx_full = 0;		netif_wake_queue (dev);	}} /* allocate and initialize Tx and Rx descriptors */static voidalloc_list (struct net_device *dev){	struct netdev_private *np = dev->priv;	int i;	np->tx_full = 0;	np->cur_rx = np->cur_tx = 0;	np->old_rx = np->old_tx = 0;	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */	for (i = 0; i < TX_RING_SIZE; i++) {		np->tx_skbuff[i] = 0;		np->tx_ring[i].status = cpu_to_le64 (TFDDone);		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +					      ((i+1)%TX_RING_SIZE) *					      sizeof (struct					      netdev_desc));	}	/* Initialize Rx descriptors */	for (i = 0; i < RX_RING_SIZE; i++) {		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +						((i + 1) % RX_RING_SIZE) *						sizeof (struct						netdev_desc));		np->rx_ring[i].status = 0;		np->rx_ring[i].fraginfo = 0;		np->rx_skbuff[i] = 0;	}	/* Allocate the rx buffers */	for (i = 0; i < RX_RING_SIZE; i++) {		/* Allocated fixed size of skbuff */		struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz);		np->rx_skbuff[i] = skb;		if (skb == NULL) {			printk (KERN_ERR				"%s: alloc_list: allocate Rx buffer error! ",				dev->name);			break;		}		skb->dev = dev;	/* Mark as being used by this device. */		skb_reserve (skb, 2);	/* 16 byte align the IP header. */		/* Rubicon now supports 40 bits of addressing space. */		np->rx_ring[i].fraginfo =		    cpu_to_le64 (pci_map_single				 (np->pdev, skb->tail, np->rx_buf_sz,				  PCI_DMA_FROMDEVICE));		np->rx_ring[i].fraginfo |= cpu_to_le64 (np->rx_buf_sz) << 48;	}	/* Set RFDListPtr */	writel (cpu_to_le32 (np->rx_ring_dma), dev->base_addr + RFDListPtr0);	writel (0, dev->base_addr + RFDListPtr1);	return;}static intstart_xmit (struct sk_buff *skb, struct net_device *dev){	struct netdev_private *np = dev->priv;	struct netdev_desc *txdesc;	unsigned entry;	u32 ioaddr;	int tx_shift;	unsigned long flags;	ioaddr = dev->base_addr;	entry = np->cur_tx % TX_RING_SIZE;	np->tx_skbuff[entry] = skb;	txdesc = &np->tx_ring[entry];	/* Set TFDDone to avoid TxDMA gather this descriptor */	txdesc->status = cpu_to_le64 (TFDDone);	txdesc->status |=	    cpu_to_le64 (entry | WordAlignDisable | (1 << FragCountShift));#if 0	if (skb->ip_summed == CHECKSUM_HW) {		txdesc->status |=		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |				 IPChecksumEnable);	}#endif	if (np->vlan) {		txdesc->status |=		    cpu_to_le64 (VLANTagInsert) |		    (cpu_to_le64 (np->vlan) << 32) |		    (cpu_to_le64 (skb->priority) << 45);	}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -