📄 3w-xxxx.c
字号:
queue = 0; switch (aen_code) { case TW_AEN_QUEUE_EMPTY: dprintk(KERN_WARNING "3w-xxxx: AEN: %s.\n", tw_aen_string[aen & 0xff]); if (first_reset != 1) { continue; } else { finished = 1; } break; case TW_AEN_SOFT_RESET: if (first_reset == 0) { first_reset = 1; } else { printk(KERN_WARNING "3w-xxxx: AEN: %s.\n", tw_aen_string[aen & 0xff]); tw_dev->aen_count++; queue = 1; } break; default: if (aen == 0x0ff) { printk(KERN_WARNING "3w-xxxx: AEN: AEN queue overflow.\n"); } else { if ((aen & 0x0ff) < TW_AEN_STRING_MAX) { if ((tw_aen_string[aen & 0xff][strlen(tw_aen_string[aen & 0xff])-1]) == '#') { printk(KERN_WARNING "3w-xxxx: AEN: %s%d.\n", tw_aen_string[aen & 0xff], aen >> 8); } else { printk(KERN_WARNING "3w-xxxx: AEN: %s.\n", tw_aen_string[aen & 0xff]); } } else printk(KERN_WARNING "3w-xxxx: Received AEN %d.\n", aen); } tw_dev->aen_count++; queue = 1; } /* Now put the aen on the aen_queue */ if (queue == 1) { tw_dev->aen_queue[tw_dev->aen_tail] = aen_code; if (tw_dev->aen_tail == TW_Q_LENGTH - 1) { tw_dev->aen_tail = TW_Q_START; } else { tw_dev->aen_tail = tw_dev->aen_tail + 1; } if (tw_dev->aen_head == tw_dev->aen_tail) { if (tw_dev->aen_head == TW_Q_LENGTH - 1) { tw_dev->aen_head = TW_Q_START; } else { tw_dev->aen_head = tw_dev->aen_head + 1; } } } found = 1; break; } } if (found == 0) { printk(KERN_WARNING "3w-xxxx: tw_aen_drain_queue(): Response never received.\n"); return 1; } tries++; } while ((tries < TW_MAX_AEN_TRIES) && (finished == 0)); if (tries >=TW_MAX_AEN_TRIES) { printk(KERN_WARNING "3w-xxxx: tw_aen_drain_queue(): Aen queue error.\n"); return 1; } return 0;} /* End tw_aen_drain_queue() *//* This function will read the aen queue from the isr */int tw_aen_read_queue(TW_Device_Extension *tw_dev, int request_id) { TW_Command *command_packet; TW_Param *param; u32 command_que_value = 0, command_que_addr; u32 status_reg_value = 0, status_reg_addr; u32 param_value = 0; dprintk(KERN_NOTICE "3w-xxxx: tw_aen_read_queue()\n"); command_que_addr = tw_dev->registers.command_que_addr; status_reg_addr = tw_dev->registers.status_reg_addr; status_reg_value = inl(status_reg_addr); if (tw_check_bits(status_reg_value)) { dprintk(KERN_WARNING "3w-xxxx: tw_aen_read_queue(): Unexpected bits.\n"); tw_decode_bits(tw_dev, status_reg_value); return 1; } if (tw_dev->command_packet_virtual_address[request_id] == NULL) { printk(KERN_WARNING "3w-xxxx: tw_aen_read_queue(): Bad command packet virtual address.\n"); return 1; } command_packet = (TW_Command *)tw_dev->command_packet_virtual_address[request_id]; memset(command_packet, 0, sizeof(TW_Sector)); command_packet->byte0.opcode = TW_OP_GET_PARAM; command_packet->byte0.sgl_offset = 2; command_packet->size = 4; command_packet->request_id = request_id; command_packet->byte3.unit = 0; command_packet->byte3.host_id = 0; command_packet->status = 0; command_packet->flags = 0; command_packet->byte6.parameter_count = 1; command_que_value = tw_dev->command_packet_physical_address[request_id]; if (command_que_value == 0) { printk(KERN_WARNING "3w-xxxx: tw_aen_read_queue(): Bad command packet physical address.\n"); return 1; } /* Now setup the param */ if (tw_dev->alignment_virtual_address[request_id] == NULL) { printk(KERN_WARNING "3w-xxxx: tw_aen_read_queue(): Bad alignment virtual address.\n"); return 1; } param = (TW_Param *)tw_dev->alignment_virtual_address[request_id]; memset(param, 0, sizeof(TW_Sector)); param->table_id = 0x401; /* AEN table */ param->parameter_id = 2; /* Unit code */ param->parameter_size_bytes = 2; param_value = tw_dev->alignment_physical_address[request_id]; if (param_value == 0) { printk(KERN_WARNING "3w-xxxx: tw_aen_read_queue(): Bad alignment physical address.\n"); return 1; } command_packet->byte8.param.sgl[0].address = param_value; command_packet->byte8.param.sgl[0].length = sizeof(TW_Sector); /* Now post the command packet */ if ((status_reg_value & TW_STATUS_COMMAND_QUEUE_FULL) == 0) { dprintk(KERN_WARNING "3w-xxxx: tw_aen_read_queue(): Post succeeded.\n"); tw_dev->srb[request_id] = 0; /* Flag internal command */ tw_dev->state[request_id] = TW_S_POSTED; outl(command_que_value, command_que_addr); } else { printk(KERN_WARNING "3w-xxxx: tw_aen_read_queue(): Post failed, will retry.\n"); return 1; } return 0;} /* End tw_aen_read_queue() *//* This function will allocate memory and check if it is 16 d-word aligned */int tw_allocate_memory(TW_Device_Extension *tw_dev, int request_id, int size, int which){ u32 *virt_addr = kmalloc(size, GFP_ATOMIC); dprintk(KERN_NOTICE "3w-xxxx: tw_allocate_memory()\n"); if (!virt_addr) { printk(KERN_WARNING "3w-xxxx: tw_allocate_memory(): kmalloc() failed.\n"); return 1; } if ((u32)virt_addr % TW_ALIGNMENT) { kfree(virt_addr); printk(KERN_WARNING "3w-xxxx: tw_allocate_memory(): Found unaligned address.\n"); return 1; } switch(which) { case 0: tw_dev->command_packet_virtual_address[request_id] = virt_addr; tw_dev->command_packet_physical_address[request_id] = virt_to_bus(virt_addr); break; case 1: tw_dev->alignment_virtual_address[request_id] = virt_addr; tw_dev->alignment_physical_address[request_id] = virt_to_bus(virt_addr); break; case 2: tw_dev->bounce_buffer[request_id] = virt_addr; break; default: printk(KERN_WARNING "3w-xxxx: tw_allocate_memory(): case slip in tw_allocate_memory()\n"); return 1; } return 0;} /* End tw_allocate_memory() *//* This function will check the status register for unexpected bits */int tw_check_bits(u32 status_reg_value){ if ((status_reg_value & TW_STATUS_EXPECTED_BITS) != TW_STATUS_EXPECTED_BITS) { dprintk(KERN_WARNING "3w-xxxx: tw_check_bits(): No expected bits (0x%x).\n", status_reg_value); return 1; } if ((status_reg_value & TW_STATUS_UNEXPECTED_BITS) != 0) { dprintk(KERN_WARNING "3w-xxxx: tw_check_bits(): Found unexpected bits (0x%x).\n", status_reg_value); return 1; } return 0;} /* End tw_check_bits() *//* This function will report controller error status */int tw_check_errors(TW_Device_Extension *tw_dev) { u32 status_reg_addr, status_reg_value; status_reg_addr = tw_dev->registers.status_reg_addr; status_reg_value = inl(status_reg_addr); if (TW_STATUS_ERRORS(status_reg_value) || tw_check_bits(status_reg_value)) return 1; return 0;} /* End tw_check_errors() *//* This function will clear the attention interrupt */void tw_clear_attention_interrupt(TW_Device_Extension *tw_dev){ u32 control_reg_addr, control_reg_value; control_reg_addr = tw_dev->registers.control_reg_addr; control_reg_value = TW_CONTROL_CLEAR_ATTENTION_INTERRUPT; outl(control_reg_value, control_reg_addr);} /* End tw_clear_attention_interrupt() *//* This function will clear the host interrupt */void tw_clear_host_interrupt(TW_Device_Extension *tw_dev){ u32 control_reg_addr, control_reg_value; control_reg_addr = tw_dev->registers.control_reg_addr; control_reg_value = TW_CONTROL_CLEAR_HOST_INTERRUPT; outl(control_reg_value, control_reg_addr);} /* End tw_clear_host_interrupt() *//* This function is called by tw_scsi_proc_info */static int tw_copy_info(TW_Info *info, char *fmt, ...) { va_list args; char buf[81]; int len; va_start(args, fmt); len = vsprintf(buf, fmt, args); va_end(args); tw_copy_mem_info(info, buf, len); return len;} /* End tw_copy_info() *//* This function is called by tw_scsi_proc_info */static void tw_copy_mem_info(TW_Info *info, char *data, int len){ if (info->position + len > info->length) len = info->length - info->position; if (info->position + len < info->offset) { info->position += len; return; } if (info->position < info->offset) { data += (info->offset - info->position); len -= (info->offset - info->position); } if (len > 0) { memcpy(info->buffer + info->position, data, len); info->position += len; }} /* End tw_copy_mem_info() *//* This function will print readable messages from status register errors */void tw_decode_bits(TW_Device_Extension *tw_dev, u32 status_reg_value){ dprintk(KERN_WARNING "3w-xxxx: tw_decode_bits()\n"); switch (status_reg_value & TW_STATUS_UNEXPECTED_BITS) { case TW_STATUS_PCI_PARITY_ERROR: printk(KERN_WARNING "3w-xxxx: PCI Parity Error: Reseat card, move card, or buggy device on the bus.\n"); outl(TW_CONTROL_CLEAR_PARITY_ERROR, tw_dev->registers.control_reg_addr); pci_write_config_word(tw_dev->tw_pci_dev, PCI_STATUS, TW_PCI_CLEAR_PARITY_ERRORS); break; case TW_STATUS_MICROCONTROLLER_ERROR: printk(KERN_WARNING "3w-xxxx: Microcontroller Error.\n"); break; case TW_STATUS_PCI_ABORT: printk(KERN_WARNING "3w-xxxx: PCI Abort: clearing.\n"); outl(TW_CONTROL_CLEAR_PCI_ABORT, tw_dev->registers.control_reg_addr); pci_write_config_word(tw_dev->tw_pci_dev, PCI_STATUS, TW_PCI_CLEAR_PCI_ABORT); break; }} /* End tw_decode_bits() *//* This function will print readable messages from flags and status values */void tw_decode_error(TW_Device_Extension *tw_dev, unsigned char status, unsigned char flags, unsigned char unit){ dprintk(KERN_WARNING "3w-xxxx: tw_decode_error()\n"); switch (status) { case 0xc7: switch (flags) { case 0x1b: printk(KERN_WARNING "3w-xxxx: scsi%d: Drive timeout on unit %d, check drive and drive cables.\n", tw_dev->host->host_no, unit); break; case 0x51: printk(KERN_WARNING "3w-xxxx: scsi%d: Unrecoverable drive error on unit %d, check/replace cabling, or possible bad drive.\n", tw_dev->host->host_no, unit); break; default: printk(KERN_WARNING "3w-xxxx: scsi%d: Controller error: status = 0x%x, flags = 0x%x, unit #%d.\n", tw_dev->host->host_no, status, flags, unit); } break; default: printk(KERN_WARNING "3w-xxxx: scsi%d: Controller error: status = 0x%x, flags = 0x%x, unit #%d.\n", tw_dev->host->host_no, status, flags, unit); }} /* End tw_decode_error() *//* This function will disable interrupts on the controller */ void tw_disable_interrupts(TW_Device_Extension *tw_dev) { u32 control_reg_value, control_reg_addr; control_reg_addr = tw_dev->registers.control_reg_addr; control_reg_value = TW_CONTROL_DISABLE_INTERRUPTS; outl(control_reg_value, control_reg_addr);} /* End tw_disable_interrupts() *//* This function will empty the response que */int tw_empty_response_que(TW_Device_Extension *tw_dev) { u32 status_reg_addr, status_reg_value; u32 response_que_addr, response_que_value; status_reg_addr = tw_dev->registers.status_reg_addr; response_que_addr = tw_dev->registers.response_que_addr; status_reg_value = inl(status_reg_addr); if (tw_check_bits(status_reg_value)) { dprintk(KERN_WARNING "3w-xxxx: tw_empty_response_queue(): Unexpected bits 1.\n"); tw_decode_bits(tw_dev, status_reg_value); return 1; } while ((status_reg_value & TW_STATUS_RESPONSE_QUEUE_EMPTY) == 0) { response_que_value = inl(response_que_addr); status_reg_value = inl(status_reg_addr); if (tw_check_bits(status_reg_value)) { dprintk(KERN_WARNING "3w-xxxx: tw_empty_response_queue(): Unexpected bits 2.\n"); tw_decode_bits(tw_dev, status_reg_value); return 1; } } return 0;} /* End tw_empty_response_que() *//* This function will enable interrupts on the controller */void tw_enable_interrupts(TW_Device_Extension *tw_dev){ u32 control_reg_value, control_reg_addr; control_reg_addr = tw_dev->registers.control_reg_addr; control_reg_value = (TW_CONTROL_ENABLE_INTERRUPTS | TW_CONTROL_UNMASK_RESPONSE_INTERRUPT);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -