📄 zs.c
字号:
/* * decserial.c: Serial port driver for IOASIC DECstations. * * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. * Derived from drivers/macintosh/macserial.c by Harald Koerfgen. * * DECstation changes * Copyright (C) 1998-2000 Harald Koerfgen * Copyright (C) 2000,2001 Maciej W. Rozycki <macro@ds2.pg.gda.pl> * * For the rest of the code the original Copyright applies: * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * * * Note: for IOASIC systems the wiring is as follows: * * mouse/keyboard: * DIN-7 MJ-4 signal SCC * 2 1 TxD <- A.TxD * 3 4 RxD -> A.RxD * * EIA-232/EIA-423: * DB-25 MMJ-6 signal SCC * 2 2 TxD <- B.TxD * 3 5 RxD -> B.RxD * 4 RTS <- ~A.RTS * 5 CTS -> ~B.CTS * 6 6 DSR -> ~A.SYNC * 8 CD -> ~B.DCD * 12 DSRS(DCE) -> ~A.CTS (*) * 15 TxC -> B.TxC * 17 RxC -> B.RxC * 20 1 DTR <- ~A.DTR * 22 RI -> ~A.DCD * 23 DSRS(DTE) <- ~B.RTS * * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE) * is shared with DSRS(DTE) at pin 23. */#include <linux/config.h>#include <linux/version.h>#include <linux/errno.h>#include <linux/signal.h>#include <linux/sched.h>#include <linux/timer.h>#include <linux/interrupt.h>#include <linux/tty.h>#include <linux/tty_flip.h>#include <linux/major.h>#include <linux/string.h>#include <linux/fcntl.h>#include <linux/mm.h>#include <linux/kernel.h>#include <linux/delay.h>#include <linux/init.h>#include <linux/ioport.h>#ifdef CONFIG_SERIAL_CONSOLE#include <linux/console.h>#endif#include <asm/io.h>#include <asm/pgtable.h>#include <asm/irq.h>#include <asm/system.h>#include <asm/segment.h>#include <asm/bitops.h>#include <asm/uaccess.h>#include <asm/wbflush.h>#include <asm/bootinfo.h>#ifdef CONFIG_DECSTATION#include <asm/dec/interrupts.h>#include <asm/dec/machtype.h>#include <asm/dec/tc.h>#include <asm/dec/ioasic_addrs.h>#endif#ifdef CONFIG_BAGET_MIPS#include <asm/baget/baget.h>unsigned long system_base;#endif#ifdef CONFIG_KGDB#include <asm/kgdb.h>#endif#ifdef CONFIG_MAGIC_SYSRQ#include <linux/sysrq.h>#endif#include "zs.h"/* * It would be nice to dynamically allocate everything that * depends on NUM_SERIAL, so we could support any number of * Z8530s, but for now... */#define NUM_SERIAL 2 /* Max number of ZS chips supported */#define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */#define CHANNEL_A_NR (zs_parms->channel_a_offset > zs_parms->channel_b_offset) /* Number of channel A in the chip */ #define ZS_CHAN_IO_SIZE 8#define ZS_CLOCK 7372800 /* Z8530 RTxC input clock rate */#define RECOVERY_DELAY udelay(2)struct zs_parms { unsigned long scc0; unsigned long scc1; int channel_a_offset; int channel_b_offset; int irq; int clock;};static struct zs_parms *zs_parms;#ifdef CONFIG_DECSTATIONstatic struct zs_parms ds_parms = { scc0 : SCC0, scc1 : SCC1, channel_a_offset : 1, channel_b_offset : 9, irq : SERIAL, clock : ZS_CLOCK};#endif#ifdef CONFIG_BAGET_MIPSstatic struct zs_parms baget_parms = { scc0 : UNI_SCC0, scc1 : UNI_SCC1, channel_a_offset : 9, channel_b_offset : 1, irq : BAGET_SCC_IRQ, clock : 14745000};#endif#ifdef CONFIG_DECSTATION#define DS_BUS_PRESENT (IOASIC)#else#define DS_BUS_PRESENT 0#endif#ifdef CONFIG_BAGET_MIPS#define BAGET_BUS_PRESENT (mips_machtype == MACH_BAGET202)#else#define BAGET_BUS_PRESENT 0#endif#define BUS_PRESENT (DS_BUS_PRESENT || BAGET_BUS_PRESENT)struct dec_zschannel zs_channels[NUM_CHANNELS];struct dec_serial zs_soft[NUM_CHANNELS];int zs_channels_found;struct dec_serial *zs_chain; /* list of all channels */struct tty_struct zs_ttys[NUM_CHANNELS];#ifdef CONFIG_SERIAL_CONSOLEstatic struct console sercons;#endif#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) \ && !defined(MODULE)static unsigned long break_pressed; /* break, really ... */#endifstatic unsigned char zs_init_regs[16] __initdata = { 0, /* write 0 */ 0, /* write 1 */ 0xf0, /* write 2 */ (Rx8), /* write 3 */ (X16CLK | SB1), /* write 4 */ (Tx8), /* write 5 */ 0, 0, 0, /* write 6, 7, 8 */ (VIS), /* write 9 */ (NRZ), /* write 10 */ (TCBR | RCBR), /* write 11 */ 0, 0, /* BRG time constant, write 12 + 13 */ (BRSRC | BRENABL), /* write 14 */ 0 /* write 15 */};DECLARE_TASK_QUEUE(tq_zs_serial);struct tty_driver serial_driver, callout_driver;static int serial_refcount;/* serial subtype definitions */#define SERIAL_TYPE_NORMAL 1#define SERIAL_TYPE_CALLOUT 2/* number of characters left in xmit buffer before we ask for more */#define WAKEUP_CHARS 256/* * Debugging. */#undef SERIAL_DEBUG_INTR#undef SERIAL_DEBUG_OPEN#undef SERIAL_DEBUG_FLOW#undef SERIAL_DEBUG_THROTTLE#undef SERIAL_PARANOIA_CHECK#undef ZS_DEBUG_REGS#ifdef SERIAL_DEBUG_THROTTLE#define _tty_name(tty,buf) tty_name(tty,buf)#endif#define RS_STROBE_TIME 10#define RS_ISR_PASS_LIMIT 256#define _INLINE_ inlinestatic void probe_sccs(void);static void change_speed(struct dec_serial *info);static void rs_wait_until_sent(struct tty_struct *tty, int timeout);static struct tty_struct *serial_table[NUM_CHANNELS];static struct termios *serial_termios[NUM_CHANNELS];static struct termios *serial_termios_locked[NUM_CHANNELS];#ifndef MIN#define MIN(a,b) ((a) < (b) ? (a) : (b))#endif/* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the copy_from_user blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */static unsigned char tmp_buf[4096]; /* This is cheating */static DECLARE_MUTEX(tmp_buf_sem);static inline int serial_paranoia_check(struct dec_serial *info, dev_t device, const char *routine){#ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%d, %d) in %s\n"; static const char *badinfo = "Warning: null mac_serial for (%d, %d) in %s\n"; if (!info) { printk(badinfo, MAJOR(device), MINOR(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, MAJOR(device), MINOR(device), routine); return 1; }#endif return 0;}/* * This is used to figure out the divisor speeds and the timeouts */static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 0 };/* * Reading and writing Z8530 registers. */static inline unsigned char read_zsreg(struct dec_zschannel *channel, unsigned char reg){ unsigned char retval; if (reg != 0) { *channel->control = reg & 0xf; wbflush(); RECOVERY_DELAY; } retval = *channel->control; RECOVERY_DELAY; return retval;}static inline void write_zsreg(struct dec_zschannel *channel, unsigned char reg, unsigned char value){ if (reg != 0) { *channel->control = reg & 0xf; wbflush(); RECOVERY_DELAY; } *channel->control = value; wbflush(); RECOVERY_DELAY; return;}static inline unsigned char read_zsdata(struct dec_zschannel *channel){ unsigned char retval; retval = *channel->data; RECOVERY_DELAY; return retval;}static inline void write_zsdata(struct dec_zschannel *channel, unsigned char value){ *channel->data = value; wbflush(); RECOVERY_DELAY; return;}static inline void load_zsregs(struct dec_zschannel *channel, unsigned char *regs){/* ZS_CLEARERR(channel); ZS_CLEARFIFO(channel); */ /* Load 'em up */ write_zsreg(channel, R4, regs[R4]); write_zsreg(channel, R3, regs[R3] & ~RxENABLE); write_zsreg(channel, R5, regs[R5] & ~TxENAB); write_zsreg(channel, R9, regs[R9]); write_zsreg(channel, R1, regs[R1]); write_zsreg(channel, R2, regs[R2]); write_zsreg(channel, R10, regs[R10]); write_zsreg(channel, R11, regs[R11]); write_zsreg(channel, R12, regs[R12]); write_zsreg(channel, R13, regs[R13]); write_zsreg(channel, R14, regs[R14]); write_zsreg(channel, R15, regs[R15]); write_zsreg(channel, R3, regs[R3]); write_zsreg(channel, R5, regs[R5]); return;}/* Sets or clears DTR/RTS on the requested line */static inline void zs_rtsdtr(struct dec_serial *info, int which, int set){ unsigned long flags; save_flags(flags); cli(); if (info->zs_channel != info->zs_chan_a) { if (set) { info->zs_chan_a->curregs[5] |= (which & (RTS | DTR)); } else { info->zs_chan_a->curregs[5] &= ~(which & (RTS | DTR)); } write_zsreg(info->zs_chan_a, 5, info->zs_chan_a->curregs[5]); } restore_flags(flags);}/* Utility routines for the Zilog */static inline int get_zsbaud(struct dec_serial *ss){ struct dec_zschannel *channel = ss->zs_channel; int brg; /* The baud rate is split up between two 8-bit registers in * what is termed 'BRG time constant' format in my docs for * the chip, it is a function of the clk rate the chip is * receiving which happens to be constant. */ brg = (read_zsreg(channel, 13) << 8); brg |= read_zsreg(channel, 12); return BRG_TO_BPS(brg, (zs_parms->clock/(ss->clk_divisor)));}/* On receive, this clears errors and the receiver interrupts */static inline void rs_recv_clear(struct dec_zschannel *zsc){ write_zsreg(zsc, 0, ERR_RES); write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */}/* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */static int tty_break; /* Set whenever BREAK condition is detected. *//* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */static _INLINE_ void rs_sched_event(struct dec_serial *info, int event){ info->event |= 1 << event; queue_task(&info->tqueue, &tq_zs_serial); mark_bh(SERIAL_BH);}static _INLINE_ void receive_chars(struct dec_serial *info, struct pt_regs *regs){ struct tty_struct *tty = info->tty; unsigned char ch, stat, flag; while ((read_zsreg(info->zs_channel, R0) & Rx_CH_AV) != 0) { stat = read_zsreg(info->zs_channel, R1); ch = read_zsdata(info->zs_channel); if (!tty && !info->hook && !info->hook->rx_char) continue; if (tty_break) { tty_break = 0;#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && !defined(MODULE) if (info->line == sercons.index) { if (!break_pressed) { break_pressed = jiffies; goto ignore_char; } break_pressed = 0; }#endif flag = TTY_BREAK; if (info->flags & ZILOG_SAK) do_SAK(tty); } else { if (stat & Rx_OVR) { flag = TTY_OVERRUN; } else if (stat & FRM_ERR) { flag = TTY_FRAME; } else if (stat & PAR_ERR) { flag = TTY_PARITY; } else flag = 0; if (flag) /* reset the error indication */ write_zsreg(info->zs_channel, R0, ERR_RES); }#if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && !defined(MODULE) if (break_pressed && info->line == sercons.index) { if (ch != 0 && time_before(jiffies, break_pressed + HZ*5)) { handle_sysrq(ch, regs, NULL, NULL); break_pressed = 0; goto ignore_char; } break_pressed = 0; }#endif if (info->hook && info->hook->rx_char) { (*info->hook->rx_char)(ch, flag); return; } if (tty->flip.count >= TTY_FLIPBUF_SIZE) { static int flip_buf_ovf; ++flip_buf_ovf; continue; } tty->flip.count++; { static int flip_max_cnt; if (flip_max_cnt < tty->flip.count) flip_max_cnt = tty->flip.count; } *tty->flip.flag_buf_ptr++ = flag; *tty->flip.char_buf_ptr++ = ch; ignore_char: } if (tty) tty_flip_buffer_push(tty);}static void transmit_chars(struct dec_serial *info){ if ((read_zsreg(info->zs_channel, R0) & Tx_BUF_EMP) == 0) return; info->tx_active = 0; if (info->x_char) { /* Send next char */ write_zsdata(info->zs_channel, info->x_char); info->x_char = 0; info->tx_active = 1; return; } if ((info->xmit_cnt <= 0) || (info->tty && info->tty->stopped) || info->tx_stopped) { write_zsreg(info->zs_channel, R0, RES_Tx_P); return; } /* Send char */ write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; info->tx_active = 1; if (info->xmit_cnt < WAKEUP_CHARS) rs_sched_event(info, RS_EVENT_WRITE_WAKEUP);}static _INLINE_ void status_handle(struct dec_serial *info){ unsigned char stat; /* Get status from Read Register 0 */ stat = read_zsreg(info->zs_channel, R0); if (stat & BRK_ABRT) {#ifdef SERIAL_DEBUG_INTR printk("handling break....");#endif tty_break = 1; } if (info->zs_channel != info->zs_chan_a) { /* FIXEM: Check for DCD transitions */ if (((stat ^ info->read_reg_zero) & DCD) != 0 && info->tty && !C_CLOCAL(info->tty)) { if (stat & DCD) { wake_up_interruptible(&info->open_wait); } else if (!(info->flags & ZILOG_CALLOUT_ACTIVE)) { tty_hangup(info->tty); } } /* Check for CTS transitions */ if (info->tty && C_CRTSCTS(info->tty)) { if ((stat & CTS) != 0) { if (info->tx_stopped) { info->tx_stopped = 0; if (!info->tx_active) transmit_chars(info); } } else { info->tx_stopped = 1; } } } /* Clear status condition... */ write_zsreg(info->zs_channel, R0, RES_EXT_INT); info->read_reg_zero = stat;}/* * This is the serial driver's generic interrupt routine */void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs){ struct dec_serial *info = (struct dec_serial *) dev_id; unsigned char zs_intreg; int shift; /* NOTE: The read register 3, which holds the irq status, * does so for both channels on each chip. Although * the status value itself must be read from the A * channel and is only valid when read from channel A. * Yes... broken hardware... */#define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT) if (info->zs_chan_a == info->zs_channel) shift = 3; /* Channel A */ else shift = 0; /* Channel B */ for (;;) { zs_intreg = read_zsreg(info->zs_chan_a, R3) >> shift; if ((zs_intreg & CHAN_IRQMASK) == 0) break; if (zs_intreg & CHBRxIP) { receive_chars(info, regs); } if (zs_intreg & CHBTxIP) { transmit_chars(info); } if (zs_intreg & CHBEXT) { status_handle(info); } } /* Why do we need this ? */ write_zsreg(info->zs_channel, 0, RES_H_IUS);}#ifdef ZS_DEBUG_REGSvoid zs_dump (void) { int i, j; for (i = 0; i < zs_channels_found; i++) { struct dec_zschannel *ch = &zs_channels[i];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -