📄 minimize.m
字号:
function [beq, spol] = minimize(x0,data,smat,emat,tt,tint,sizemat,bc,bt); %
% Find the polynomial estimates where the focal quality
% indicator is minimum. In this algorithm, the weighted
% least squares combined with complex analysis method
% is used as focal quality indicator.
%
matcomp=motioncomp(data,x0,tt,bc); [mm,nn]=size(matcomp); cenerc=[]; dds=[];
for bcount=1:mm daburst=matcomp(bcount,:); cfind=max(find(emat(bcount,:))); cenerb=[]; dslope=[]; for cnum=1:cfind cstartend=smat(bcount,cnum):emat(bcount,cnum); cslope=daburst(cstartend); ccslope=abs(cslope); sumcsl=sum(ccslope); cenerb=[cenerb;sumcsl]; dslmean=gradient5(cslope); dslope=[dslope;dslmean]; end cenerc=[cenerc;cenerb]; dds=[dds;dslope]; end ddss=dds*22.00158; cenercc=cenerc.^2; midtime=tint*((smat+emat)/2-1); findtime = midtime > 0; btmat=(bt*ones(1,sizemat)+midtime).*double(findtime); btmatt=btmat.'; nonzvec=nonzeros(btmatt); polyestim=wls(nonzvec,ddss,cenercc,2); spol1=2*polyestim(1); spol2=polyestim(2); enpoly=sqrt(spol2^2+spol1^2); spol=[spol2;spol1]; beq=enpoly;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -