⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r2cb_128.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 5 页
字号:
			      {				   E T3C, TdG, TdH, T2W, T37, T7I, T7H, T3B, T3E;				   {					E TE, T31, TL, TaJ, TaM;					Tas = TA - TD;					TE = TA + TD;					T3C = T2X + T30;					T31 = T2X - T30;					TL = TH + TK;					TaJ = TH - TK;					TaM = TaK - TaL;					TdG = TaL + TaK;					TdA = TE - TL;					TM = TE + TL;					Tcv = TaM - TaJ;					TaN = TaJ + TaM;					TdH = Tau + Tat;					Tav = Tat - Tau;					T7w = T2S + T2V;					T2W = T2S - T2V;					T37 = T31 + T36;					T7I = T36 - T31;				   }				   T7H = T3A - T3x;				   T3B = T3x + T3A;				   TeP = TdH + TdG;				   TdI = TdG - TdH;				   T6i = FNMS(KP707106781, T37, T2W);				   T38 = FMA(KP707106781, T37, T2W);				   T3E = T3C - T3D;				   T7x = T3C + T3D;				   T6l = FNMS(KP707106781, T3E, T3B);				   T3F = FMA(KP707106781, T3E, T3B);				   T9b = FMA(KP707106781, T7I, T7H);				   T7J = FNMS(KP707106781, T7I, T7H);			      }			 }			 {			      E T4r, T4I, T1F, Tbb, T4u, T4L, Tbj, TdS, T1I, Tbd, T4N, T4A, T4B, T1L, Tbc;			      E T4E, T1M, Tbg;			      {				   E T1z, T1A, T1C, T1D, Tbi, Tbh;				   T1z = Cr[WS(csr, 5)];				   Tcs = Tas - Tav;				   Taw = Tas + Tav;				   T98 = FMA(KP707106781, T7x, T7w);				   T7y = FNMS(KP707106781, T7x, T7w);				   T1A = Cr[WS(csr, 59)];				   T1C = Cr[WS(csr, 37)];				   T1D = Cr[WS(csr, 27)];				   {					E T4s, T1B, T1E, T4t, T4J, T4K;					T4s = Ci[WS(csi, 37)];					T4r = T1z - T1A;					T1B = T1z + T1A;					T4I = T1C - T1D;					T1E = T1C + T1D;					T4t = Ci[WS(csi, 27)];					T4J = Ci[WS(csi, 5)];					T4K = Ci[WS(csi, 59)];					T1F = T1B + T1E;					Tbb = T1B - T1E;					T4u = T4s + T4t;					Tbi = T4s - T4t;					Tbh = T4J - T4K;					T4L = T4J + T4K;				   }				   {					E T1J, T4w, T4z, T1K, T4C, T4D;					{					     E T1G, T1H, T4x, T4y;					     T1G = Cr[WS(csr, 21)];					     Tbj = Tbh - Tbi;					     TdS = Tbi + Tbh;					     T1H = Cr[WS(csr, 43)];					     T4x = Ci[WS(csi, 21)];					     T4y = Ci[WS(csi, 43)];					     T1J = Cr[WS(csr, 11)];					     T4w = T1G - T1H;					     T1I = T1G + T1H;					     Tbd = T4x - T4y;					     T4z = T4x + T4y;					     T1K = Cr[WS(csr, 53)];					     T4C = Ci[WS(csi, 11)];					     T4D = Ci[WS(csi, 53)];					}					T4N = T4w + T4z;					T4A = T4w - T4z;					T4B = T1J - T1K;					T1L = T1J + T1K;					Tbc = T4D - T4C;					T4E = T4C + T4D;				   }			      }			      T1M = T1I + T1L;			      Tbg = T1I - T1L;			      {				   E TdT, Tbe, T4F, T4O;				   TdT = Tbd + Tbc;				   Tbe = Tbc - Tbd;				   T4F = T4B - T4E;				   T4O = T4B + T4E;				   {					E TdR, TdU, T81, T4v, T4G, T85;					TdR = T1F - T1M;					T1N = T1F + T1M;					TeW = TdT + TdS;					TdU = TdS - TdT;					T81 = T4r + T4u;					T4v = T4r - T4u;					T4G = T4A + T4F;					T85 = T4F - T4A;					{					     E T84, T4M, T4P, T82, TcG, TcH;					     T84 = T4L - T4I;					     T4M = T4I + T4L;					     T6x = FNMS(KP707106781, T4G, T4v);					     T4H = FMA(KP707106781, T4G, T4v);					     Te8 = TdR + TdU;					     TdV = TdR - TdU;					     T4P = T4N - T4O;					     T82 = T4N + T4O;					     Tbk = Tbg + Tbj;					     TcG = Tbj - Tbg;					     T6w = FNMS(KP707106781, T4P, T4M);					     T4Q = FMA(KP707106781, T4P, T4M);					     T9j = FMA(KP707106781, T85, T84);					     T86 = FNMS(KP707106781, T85, T84);					     TcH = Tbb - Tbe;					     Tbf = Tbb + Tbe;					     TcO = FMA(KP414213562, TcG, TcH);					     TcI = FNMS(KP414213562, TcH, TcG);					     T9k = FMA(KP707106781, T82, T81);					     T83 = FNMS(KP707106781, T82, T81);					}				   }			      }			 }		    }		    {			 E T88, T89, Tbv, Tbq;			 {			      E T4S, T59, T4V, Tbm, T1U, T5c, TdX, Tbu, T1X, T53, Tbo, T52, T20, T54, T5e;			      E T51;			      {				   E T1R, T1Q, T1S, T1O, T1P;				   T1O = Cr[WS(csr, 3)];				   T1P = Cr[WS(csr, 61)];				   T1R = Cr[WS(csr, 29)];				   TbI = FMA(KP414213562, Tbf, Tbk);				   Tbl = FNMS(KP414213562, Tbk, Tbf);				   T1Q = T1O + T1P;				   T4S = T1O - T1P;				   T1S = Cr[WS(csr, 35)];				   {					E Tbt, Tbs, T4X, T50;					{					     E T5a, T5b, T4T, T4U, T1T;					     T4T = Ci[WS(csi, 29)];					     T4U = Ci[WS(csi, 35)];					     T1T = T1R + T1S;					     T59 = T1R - T1S;					     T5a = Ci[WS(csi, 3)];					     Tbt = T4T - T4U;					     T4V = T4T + T4U;					     T5b = Ci[WS(csi, 61)];					     Tbm = T1Q - T1T;					     T1U = T1Q + T1T;					     T5c = T5a + T5b;					     Tbs = T5b - T5a;					}					{					     E T4Y, T4Z, T1V, T1W, T1Y, T1Z;					     T1V = Cr[WS(csr, 13)];					     T1W = Cr[WS(csr, 51)];					     TdX = Tbt + Tbs;					     Tbu = Tbs - Tbt;					     T4Y = Ci[WS(csi, 13)];					     T4X = T1V - T1W;					     T1X = T1V + T1W;					     T4Z = Ci[WS(csi, 51)];					     T1Y = Cr[WS(csr, 19)];					     T1Z = Cr[WS(csr, 45)];					     T53 = Ci[WS(csi, 19)];					     Tbo = T4Y - T4Z;					     T50 = T4Y + T4Z;					     T52 = T1Y - T1Z;					     T20 = T1Y + T1Z;					     T54 = Ci[WS(csi, 45)];					}					T5e = T4X + T50;					T51 = T4X - T50;				   }			      }			      {				   E T21, Tbr, T55, Tbn;				   T21 = T1X + T20;				   Tbr = T1X - T20;				   T55 = T53 + T54;				   Tbn = T54 - T53;				   {					E T4W, TdW, Tbp, T5f, TdZ, T57, T8c, TdY, T56;					T88 = T4S + T4V;					T4W = T4S - T4V;					T22 = T1U + T21;					TdW = T1U - T21;					TdY = Tbo + Tbn;					Tbp = Tbn - Tbo;					T56 = T52 - T55;					T5f = T52 + T55;					TeV = TdY + TdX;					TdZ = TdX - TdY;					T57 = T51 + T56;					T8c = T56 - T51;					{					     E T8b, T5d, T5g, TcD, TcE;					     T8b = T59 + T5c;					     T5d = T59 - T5c;					     T5g = T5e - T5f;					     T89 = T5e + T5f;					     Te0 = TdW + TdZ;					     Te9 = TdZ - TdW;					     T58 = FMA(KP707106781, T57, T4W);					     T6u = FNMS(KP707106781, T57, T4W);					     T6t = FNMS(KP707106781, T5g, T5d);					     T5h = FMA(KP707106781, T5g, T5d);					     Tbv = Tbr + Tbu;					     TcD = Tbu - Tbr;					     TcE = Tbm - Tbp;					     Tbq = Tbm + Tbp;					     T9m = FNMS(KP707106781, T8c, T8b);					     T8d = FMA(KP707106781, T8c, T8b);					     TcP = FNMS(KP414213562, TcD, TcE);					     TcF = FMA(KP414213562, TcE, TcD);					}				   }			      }			 }			 {			      E Tb3, Tb8, T7V, T7Y;			      {				   E T7T, T4c, TaZ, T1p, TdO, Tb2, T7U, T47, T1t, T4e, T1s, Tb5, T4m, T1u, T4f;				   E T4g;				   {					E T1m, T43, T1l, Tb0, T4b, T1n, T44, T45;					{					     E T1j, T1k, T49, T4a;					     T1j = Cr[WS(csr, 9)];					     T9n = FMA(KP707106781, T89, T88);					     T8a = FNMS(KP707106781, T89, T88);					     TbJ = FNMS(KP414213562, Tbq, Tbv);					     Tbw = FMA(KP414213562, Tbv, Tbq);					     T1k = Cr[WS(csr, 55)];					     T49 = Ci[WS(csi, 9)];					     T4a = Ci[WS(csi, 55)];					     T1m = Cr[WS(csr, 41)];					     T43 = T1j - T1k;					     T1l = T1j + T1k;					     Tb0 = T49 - T4a;					     T4b = T49 + T4a;					     T1n = Cr[WS(csr, 23)];					     T44 = Ci[WS(csi, 41)];					     T45 = Ci[WS(csi, 23)];					}					{					     E T1q, T1r, T4k, T4l;					     T1q = Cr[WS(csr, 7)];					     {						  E T48, T1o, Tb1, T46;						  T48 = T1m - T1n;						  T1o = T1m + T1n;						  Tb1 = T44 - T45;						  T46 = T44 + T45;						  T7T = T4b - T48;						  T4c = T48 + T4b;						  TaZ = T1l - T1o;						  T1p = T1l + T1o;						  TdO = Tb1 + Tb0;						  Tb2 = Tb0 - Tb1;						  T7U = T43 + T46;						  T47 = T43 - T46;						  T1r = Cr[WS(csr, 57)];					     }					     T4k = Ci[WS(csi, 7)];					     T4l = Ci[WS(csi, 57)];					     T1t = Cr[WS(csr, 25)];					     T4e = T1q - T1r;					     T1s = T1q + T1r;					     Tb5 = T4l - T4k;					     T4m = T4k + T4l;					     T1u = Cr[WS(csr, 39)];					     T4f = Ci[WS(csi, 25)];					     T4g = Ci[WS(csi, 39)];					}				   }				   {					E T7W, TdN, T7X, T5u, T4d, T4o, T5v, T8k, T8l;					{					     E T4n, T1w, T4i, TbE, TbF, Tb4, Tb7;					     {						  E T4j, T1v, Tb6, T4h;						  T4j = T1t - T1u;						  T1v = T1t + T1u;						  Tb6 = T4f - T4g;						  T4h = T4f + T4g;						  T7W = T4j + T4m;						  T4n = T4j - T4m;						  Tb4 = T1s - T1v;						  T1w = T1s + T1v;						  TdN = Tb6 + Tb5;						  Tb7 = Tb5 - Tb6;						  T7X = T4e + T4h;						  T4i = T4e - T4h;					     }					     Tb3 = TaZ - Tb2;					     TbE = TaZ + Tb2;					     TbF = Tb7 - Tb4;					     Tb8 = Tb4 + Tb7;					     Te3 = T1p - T1w;					     T1x = T1p + T1w;					     TcB = TbE - TbF;					     TbG = TbE + TbF;					     T5u = FMA(KP414213562, T47, T4c);					     T4d = FNMS(KP414213562, T4c, T47);					     T4o = FMA(KP414213562, T4n, T4i);					     T5v = FNMS(KP414213562, T4i, T4n);					}					Tf1 = TdO + TdN;					TdP = TdN - TdO;					T6C = T4o - T4d;					T4p = T4d + T4o;					T7V = FNMS(KP414213562, T7U, T7T);					T8k = FMA(KP414213562, T7T, T7U);					T8l = FMA(KP414213562, T7W, T7X);					T7Y = FNMS(KP414213562, T7X, T7W);					T6r = T5u - T5v;					T5w = T5u + T5v;					T9h = T8k + T8l;					T8m = T8k - T8l;				   }			      }			      {				   E T7z, T3i, Tax, TT, TdC, TaA, T7A, T3d, TX, T3k, TW, TaD, T3s, TY, T3l;				   E T3m;				   {					E TQ, T39, TP, Tay, T3h, TR, T3a, T3b;					{					     E TN, TO, T3f, T3g;					     TN = Cr[WS(csr, 10)];					     TcM = Tb8 - Tb3;					     Tb9 = Tb3 + Tb8;					     T9s = T7V - T7Y;					     T7Z = T7V + T7Y;					     TO = Cr[WS(csr, 54)];					     T3f = Ci[WS(csi, 10)];					     T3g = Ci[WS(csi, 54)];					     TQ = Cr[WS(csr, 42)];					     T39 = TN - TO;					     TP = TN + TO;					     Tay = T3f - T3g;					     T3h = T3f + T3g;					     TR = Cr[WS(csr, 22)];					     T3a = Ci[WS(csi, 42)];					     T3b = Ci[WS(csi, 22)];					}					{					     E TU, TV, T3q, T3r;					     TU = Cr[WS(csr, 6)];					     {						  E T3e, TS, Taz, T3c;						  T3e = TQ - TR;						  TS = TQ + TR;						  Taz = T3a - T3b;						  T3c = T3a + T3b;						  T7z = T3h - T3e;						  T3i = T3e + T3h;						  Tax = TP - TS;						  TT = TP + TS;						  TdC = Taz + Tay;						  TaA = Tay - Taz;						  T7A = T39 + T3c;						  T3d = T39 - T3c;						  TV = Cr[WS(csr, 58)];					     }					     T3q = Ci[WS(csi, 6)];					     T3r = Ci[WS(csi, 58)];					     TX = Cr[WS(csr, 26)];					     T3k = TU - TV;					     TW = TU + TV;					     TaD = T3r - T3q;					     T3s = T3q + T3r;					     TY = Cr[WS(csr, 38)];					     T3l = Ci[WS(csi, 26)];					     T3m = Ci[WS(csi, 38)];					}				   }				   {					E T7C, TdB, T7D, T3G, T3j, T3u, T3H, T7K, T7L;					{					     E T3t, T10, T3o, TaO, TaP, TaC, TaF;					     {						  E T3p, TZ, TaE, T3n;						  T3p = TX - TY;						  TZ = TX + TY;						  TaE = T3l - T3m;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -