⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cbdft_10.c

📁 快速fft变换
💻 C
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:11:48 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include hc2cb.h *//* * This function contains 122 FP additions, 72 FP multiplications, * (or, 68 additions, 18 multiplications, 54 fused multiply/add), * 95 stack variables, 4 constants, and 40 memory accesses */#include "hc2cb.h"static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     INT m;     for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(rs)) {	  E T2d, T2f;	  {	       E T1g, TQ, T1z, TZ, Tu, T23, T1p, T14, Tt, T27, T13, Tj, Tz, T1i, T18;	       E TJ, TS, T19, Ty, TA;	       {		    E Tl, T3, T7, Tm, T6, Tr, TY, T1n, Th, T8, T1, T2;		    T1 = Rp[0];		    T2 = Rm[WS(rs, 4)];		    {			 E Te, Tp, Td, Tf, Tb, Tc;			 Tb = Rp[WS(rs, 4)];			 Tc = Rm[0];			 Te = Rm[WS(rs, 3)];			 Tl = T1 - T2;			 T3 = T1 + T2;			 Tp = Tb - Tc;			 Td = Tb + Tc;			 Tf = Rp[WS(rs, 1)];			 {			      E T4, T5, Tq, Tg;			      T4 = Rp[WS(rs, 2)];			      T5 = Rm[WS(rs, 2)];			      T7 = Rm[WS(rs, 1)];			      Tq = Te - Tf;			      Tg = Te + Tf;			      Tm = T4 - T5;			      T6 = T4 + T5;			      Tr = Tp + Tq;			      TY = Tp - Tq;			      T1n = Td - Tg;			      Th = Td + Tg;			      T8 = Rp[WS(rs, 3)];			 }		    }		    {			 E TO, Tn, T9, TP;			 TO = Ip[0];			 Tn = T7 - T8;			 T9 = T7 + T8;			 TP = Im[WS(rs, 4)];			 {			      E TG, TH, TF, T16, TD, TE, Ti;			      TD = Ip[WS(rs, 4)];			      {				   E TX, To, T1o, Ta, Ts;				   TX = Tm - Tn;				   To = Tm + Tn;				   T1o = T6 - T9;				   Ta = T6 + T9;				   T1g = TO - TP;				   TQ = TO + TP;				   T1z = FNMS(KP618033988, TX, TY);				   TZ = FMA(KP618033988, TY, TX);				   Ts = To + Tr;				   Tu = To - Tr;				   T23 = FMA(KP618033988, T1n, T1o);				   T1p = FNMS(KP618033988, T1o, T1n);				   Ti = Ta + Th;				   T14 = Ta - Th;				   Tt = FNMS(KP250000000, Ts, Tl);				   T27 = Tl + Ts;				   TE = Im[0];			      }			      T13 = FNMS(KP250000000, Ti, T3);			      Tj = T3 + Ti;			      TG = Im[WS(rs, 3)];			      TH = Ip[WS(rs, 1)];			      TF = TD + TE;			      T16 = TD - TE;			      {				   E Tw, T17, TI, Tx;				   Tw = Ip[WS(rs, 2)];				   T17 = TH - TG;				   TI = TG + TH;				   Tx = Im[WS(rs, 2)];				   Tz = Im[WS(rs, 1)];				   T1i = T16 + T17;				   T18 = T16 - T17;				   TJ = TF + TI;				   TS = TF - TI;				   T19 = Tw - Tx;				   Ty = Tw + Tx;				   TA = Ip[WS(rs, 3)];			      }			 }		    }	       }	       {		    E T26, T2y, T2a, T28, T1q, T1K, T24, T2k, T10, T1Q, T1A, T2q, T29, Tk, TN;		    E T2c, T1M, T1P, T2w, TM, T1O, T1S, T1s, T1x, T2m, T2p, T1w, T1C, T2o, T2s;		    E T12, T1f, T1G, T1J, T1I, T1E, T1e, T1U, T1W, T21, T2g, T2j, T20, T2e, T2i;		    E T2u, T1a, TB;		    T1a = TA - Tz;		    TB = Tz + TA;		    {			 E T1Y, T1c, T1u, T1t, T1N, TL, TK, Tv, T2n, T1v;			 {			      E T1l, TV, T1k, TU, T1b, T1h;			      T26 = W[9];			      T1b = T19 - T1a;			      T1h = T19 + T1a;			      {				   E TC, TR, T1j, TT;				   TC = Ty + TB;				   TR = Ty - TB;				   T1Y = FMA(KP618033988, T18, T1b);				   T1c = FNMS(KP618033988, T1b, T18);				   T1j = T1h + T1i;				   T1l = T1h - T1i;				   T1u = FNMS(KP618033988, TC, TJ);				   TK = FMA(KP618033988, TJ, TC);				   TT = TR + TS;				   TV = TR - TS;				   T2y = T1g + T1j;				   T1k = FNMS(KP250000000, T1j, T1g);				   T2a = TQ + TT;				   TU = FNMS(KP250000000, TT, TQ);				   T28 = T26 * T27;			      }			      {				   E T22, T1m, T1y, TW;				   T22 = FMA(KP559016994, T1l, T1k);				   T1m = FNMS(KP559016994, T1l, T1k);				   T1y = FNMS(KP559016994, TV, TU);				   TW = FMA(KP559016994, TV, TU);				   T1q = FNMS(KP951056516, T1p, T1m);				   T1K = FMA(KP951056516, T1p, T1m);				   T24 = FNMS(KP951056516, T23, T22);				   T2k = FMA(KP951056516, T23, T22);				   T10 = FMA(KP951056516, TZ, TW);				   T1Q = FNMS(KP951056516, TZ, TW);				   T1A = FMA(KP951056516, T1z, T1y);				   T2q = FNMS(KP951056516, T1z, T1y);				   T29 = W[8];			      }			 }			 Tv = FMA(KP559016994, Tu, Tt);			 T1t = FNMS(KP559016994, Tu, Tt);			 Tk = W[1];			 TN = W[0];			 T2c = T29 * T27;			 T1N = FMA(KP951056516, TK, Tv);			 TL = FNMS(KP951056516, TK, Tv);			 T1M = W[17];			 T1P = W[16];			 T2w = TN * TL;			 TM = Tk * TL;			 T1O = T1M * T1N;			 T1S = T1P * T1N;			 T2n = FMA(KP951056516, T1u, T1t);			 T1v = FNMS(KP951056516, T1u, T1t);			 T1s = W[5];			 T1x = W[4];			 T2m = W[13];			 T2p = W[12];			 T1w = T1s * T1v;			 T1C = T1x * T1v;			 T2o = T2m * T2n;			 T2s = T2p * T2n;			 {			      E T1X, T1d, T1H, T15, T2h, T1Z;			      T1X = FMA(KP559016994, T14, T13);			      T15 = FNMS(KP559016994, T14, T13);			      T12 = W[2];			      T1f = W[3];			      T1G = W[14];			      T1d = FMA(KP951056516, T1c, T15);			      T1H = FNMS(KP951056516, T1c, T15);			      T1J = W[15];			      T1I = T1G * T1H;			      T1E = T1f * T1d;			      T1e = T12 * T1d;			      T1U = T1J * T1H;			      T2h = FNMS(KP951056516, T1Y, T1X);			      T1Z = FMA(KP951056516, T1Y, T1X);			      T1W = W[6];			      T21 = W[7];			      T2g = W[10];			      T2j = W[11];			      T20 = T1W * T1Z;			      T2e = T21 * T1Z;			      T2i = T2g * T2h;			      T2u = T2j * T2h;			 }		    }		    {			 E T1D, T1F, T1L, T1R;			 {			      E T11, T2x, T1r, T1B;			      T11 = FMA(TN, T10, TM);			      T2x = FNMS(Tk, T10, T2w);			      T1r = FNMS(T1f, T1q, T1e);			      T1B = FMA(T1x, T1A, T1w);			      Rm[0] = Tj + T11;			      Rp[0] = Tj - T11;			      Ip[0] = T2x + T2y;			      Im[0] = T2x - T2y;			      Rp[WS(rs, 1)] = T1r - T1B;			      Rm[WS(rs, 1)] = T1B + T1r;			      T1D = FNMS(T1s, T1A, T1C);			      T1F = FMA(T12, T1q, T1E);			      T1L = FNMS(T1J, T1K, T1I);			      T1R = FMA(T1P, T1Q, T1O);			 }			 {			      E T1T, T1V, T2t, T2v;			      T1T = FNMS(T1M, T1Q, T1S);			      Ip[WS(rs, 1)] = T1D + T1F;			      Im[WS(rs, 1)] = T1D - T1F;			      Rm[WS(rs, 4)] = T1R + T1L;			      Rp[WS(rs, 4)] = T1L - T1R;			      T1V = FMA(T1G, T1K, T1U);			      T2t = FNMS(T2m, T2q, T2s);			      T2v = FMA(T2g, T2k, T2u);			      {				   E T2l, T2r, T25, T2b;				   T2l = FNMS(T2j, T2k, T2i);				   Ip[WS(rs, 4)] = T1T + T1V;				   Im[WS(rs, 4)] = T1T - T1V;				   Ip[WS(rs, 3)] = T2t + T2v;				   Im[WS(rs, 3)] = T2t - T2v;				   T2r = FMA(T2p, T2q, T2o);				   T25 = FNMS(T21, T24, T20);				   T2b = FMA(T29, T2a, T28);				   T2d = FNMS(T26, T2a, T2c);				   Rm[WS(rs, 3)] = T2r + T2l;				   Rp[WS(rs, 3)] = T2l - T2r;				   Rm[WS(rs, 2)] = T2b + T25;				   Rp[WS(rs, 2)] = T25 - T2b;				   T2f = FMA(T1W, T24, T2e);			      }			 }		    }	       }	  }	  Ip[WS(rs, 2)] = T2d + T2f;	  Im[WS(rs, 2)] = T2d - T2f;     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 10},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {68, 18, 54, 0} };void X(codelet_hc2cbdft_10) (planner *p) {     X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -dif -name hc2cbdft_10 -include hc2cb.h *//* * This function contains 122 FP additions, 60 FP multiplications, * (or, 92 additions, 30 multiplications, 30 fused multiply/add), * 61 stack variables, 4 constants, and 40 memory accesses */#include "hc2cb.h"static void hc2cbdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP587785252, +0.587785252292473129168705954639072768597652438);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     INT m;     for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(rs)) {	  E T3, TS, TR, T13, Ti, T12, TT, TU, T1g, T1T, Tr, T1s, TJ, T1h, TG;	  E T1m, TK, TL, T1k, T1l, T1b, T1P, TY, T1w;	  {	       E Td, To, Tg, Tp, Th, TQ, T6, Tl, T9, Tm, Ta, TP, T1, T2;	       T1 = Rp[0];	       T2 = Rm[WS(rs, 4)];	       T3 = T1 + T2;	       TS = T1 - T2;	       {		    E Tb, Tc, Te, Tf;		    Tb = Rp[WS(rs, 4)];		    Tc = Rm[0];		    Td = Tb + Tc;		    To = Tb - Tc;		    Te = Rm[WS(rs, 3)];		    Tf = Rp[WS(rs, 1)];		    Tg = Te + Tf;		    Tp = Te - Tf;	       }	       Th = Td + Tg;	       TQ = To + Tp;	       {		    E T4, T5, T7, T8;		    T4 = Rp[WS(rs, 2)];		    T5 = Rm[WS(rs, 2)];		    T6 = T4 + T5;		    Tl = T4 - T5;		    T7 = Rm[WS(rs, 1)];		    T8 = Rp[WS(rs, 3)];		    T9 = T7 + T8;		    Tm = T7 - T8;	       }	       Ta = T6 + T9;	       TP = Tl + Tm;	       TR = KP559016994 * (TP - TQ);	       T13 = KP559016994 * (Ta - Th);	       Ti = Ta + Th;	       T12 = FNMS(KP250000000, Ti, T3);	       TT = TP + TQ;	       TU = FNMS(KP250000000, TT, TS);	       {		    E T1e, T1f, Tn, Tq;		    T1e = T6 - T9;		    T1f = Td - Tg;		    T1g = FNMS(KP951056516, T1f, KP587785252 * T1e);		    T1T = FMA(KP951056516, T1e, KP587785252 * T1f);		    Tn = Tl - Tm;		    Tq = To - Tp;		    Tr = FMA(KP951056516, Tn, KP587785252 * Tq);		    T1s = FNMS(KP951056516, Tq, KP587785252 * Tn);	       }	  }	  {	       E TB, T18, TE, T19, TF, T1j, Tu, T15, Tx, T16, Ty, T1i, TH, TI;	       TH = Ip[0];	       TI = Im[WS(rs, 4)];	       TJ = TH + TI;	       T1h = TH - TI;	       {		    E Tz, TA, TC, TD;		    Tz = Ip[WS(rs, 4)];		    TA = Im[0];		    TB = Tz + TA;		    T18 = Tz - TA;		    TC = Im[WS(rs, 3)];		    TD = Ip[WS(rs, 1)];		    TE = TC + TD;		    T19 = TD - TC;	       }	       TF = TB - TE;	       T1j = T18 + T19;	       {		    E Ts, Tt, Tv, Tw;		    Ts = Ip[WS(rs, 2)];		    Tt = Im[WS(rs, 2)];		    Tu = Ts + Tt;		    T15 = Ts - Tt;		    Tv = Im[WS(rs, 1)];		    Tw = Ip[WS(rs, 3)];		    Tx = Tv + Tw;		    T16 = Tw - Tv;	       }	       Ty = Tu - Tx;	       T1i = T15 + T16;	       TG = KP559016994 * (Ty - TF);	       T1m = KP559016994 * (T1i - T1j);	       TK = Ty + TF;	       TL = FNMS(KP250000000, TK, TJ);	       T1k = T1i + T1j;	       T1l = FNMS(KP250000000, T1k, T1h);	       {		    E T17, T1a, TW, TX;		    T17 = T15 - T16;		    T1a = T18 - T19;		    T1b = FNMS(KP951056516, T1a, KP587785252 * T17);		    T1P = FMA(KP951056516, T17, KP587785252 * T1a);		    TW = Tu + Tx;		    TX = TB + TE;		    TY = FMA(KP951056516, TW, KP587785252 * TX);		    T1w = FNMS(KP951056516, TX, KP587785252 * TW);	       }	  }	  {	       E Tj, T2g, TN, T1H, T1U, T26, TZ, T1J, T1Q, T24, T1c, T1C, T1t, T29, T1o;	       E T1E, T1x, T2b, T20, T21, TM, T1S, TV;	       Tj = T3 + Ti;	       T2g = T1h + T1k;	       TM = TG + TL;	       TN = Tr + TM;	       T1H = TM - Tr;	       T1S = T1m + T1l;	       T1U = T1S - T1T;	       T26 = T1T + T1S;	       TV = TR + TU;	       TZ = TV - TY;	       T1J = TV + TY;	       {		    E T1O, T14, T1r, T1n, T1v;		    T1O = T13 + T12;		    T1Q = T1O + T1P;		    T24 = T1O - T1P;		    T14 = T12 - T13;		    T1c = T14 - T1b;		    T1C = T14 + T1b;		    T1r = TL - TG;		    T1t = T1r - T1s;		    T29 = T1s + T1r;		    T1n = T1l - T1m;		    T1o = T1g + T1n;		    T1E = T1n - T1g;		    T1v = TU - TR;		    T1x = T1v + T1w;		    T2b = T1v - T1w;		    {			 E T1X, T1Z, T1W, T1Y;			 T1X = TS + TT;			 T1Z = TJ + TK;			 T1W = W[9];			 T1Y = W[8];			 T20 = FMA(T1W, T1X, T1Y * T1Z);			 T21 = FNMS(T1W, T1Z, T1Y * T1X);		    }	       }	       {		    E T10, T2f, Tk, TO;		    Tk = W[0];		    TO = W[1];		    T10 = FMA(Tk, TN, TO * TZ);		    T2f = FNMS(TO, TN, Tk * TZ);		    Rp[0] = Tj - T10;		    Ip[0] = T2f + T2g;		    Rm[0] = Tj + T10;		    Im[0] = T2f - T2g;	       }	       {		    E T1V, T22, T1N, T1R;		    T1N = W[6];		    T1R = W[7];		    T1V = FNMS(T1R, T1U, T1N * T1Q);		    T22 = FMA(T1R, T1Q, T1N * T1U);		    Rp[WS(rs, 2)] = T1V - T20;		    Ip[WS(rs, 2)] = T21 + T22;		    Rm[WS(rs, 2)] = T20 + T1V;		    Im[WS(rs, 2)] = T21 - T22;	       }	       {		    E T1p, T1A, T1y, T1z;		    {			 E T11, T1d, T1q, T1u;			 T11 = W[2];			 T1d = W[3];			 T1p = FNMS(T1d, T1o, T11 * T1c);			 T1A = FMA(T1d, T1c, T11 * T1o);			 T1q = W[4];			 T1u = W[5];			 T1y = FMA(T1q, T1t, T1u * T1x);			 T1z = FNMS(T1u, T1t, T1q * T1x);		    }		    Rp[WS(rs, 1)] = T1p - T1y;		    Ip[WS(rs, 1)] = T1z + T1A;		    Rm[WS(rs, 1)] = T1y + T1p;		    Im[WS(rs, 1)] = T1z - T1A;	       }	       {		    E T1F, T1M, T1K, T1L;		    {			 E T1B, T1D, T1G, T1I;			 T1B = W[14];			 T1D = W[15];			 T1F = FNMS(T1D, T1E, T1B * T1C);			 T1M = FMA(T1D, T1C, T1B * T1E);			 T1G = W[16];			 T1I = W[17];			 T1K = FMA(T1G, T1H, T1I * T1J);			 T1L = FNMS(T1I, T1H, T1G * T1J);		    }		    Rp[WS(rs, 4)] = T1F - T1K;		    Ip[WS(rs, 4)] = T1L + T1M;		    Rm[WS(rs, 4)] = T1K + T1F;		    Im[WS(rs, 4)] = T1L - T1M;	       }	       {		    E T27, T2e, T2c, T2d;		    {			 E T23, T25, T28, T2a;			 T23 = W[10];			 T25 = W[11];			 T27 = FNMS(T25, T26, T23 * T24);			 T2e = FMA(T25, T24, T23 * T26);			 T28 = W[12];			 T2a = W[13];			 T2c = FMA(T28, T29, T2a * T2b);			 T2d = FNMS(T2a, T29, T28 * T2b);		    }		    Rp[WS(rs, 3)] = T27 - T2c;		    Ip[WS(rs, 3)] = T2d + T2e;		    Rm[WS(rs, 3)] = T2c + T27;		    Im[WS(rs, 3)] = T2d - T2e;	       }	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 10},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 10, "hc2cbdft_10", twinstr, &GENUS, {92, 30, 30, 0} };void X(codelet_hc2cbdft_10) (planner *p) {     X(khc2c_register) (p, hc2cbdft_10, &desc, HC2C_VIA_DFT);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -