⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hb2_25.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 4 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:08:17 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 25 -dif -name hb2_25 -include hb.h *//* * This function contains 440 FP additions, 434 FP multiplications, * (or, 84 additions, 78 multiplications, 356 fused multiply/add), * 234 stack variables, 47 constants, and 100 memory accesses */#include "hb.h"static void hb2_25(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP833417178, +0.833417178328688677408962550243238843138996060);     DK(KP921177326, +0.921177326965143320250447435415066029359282231);     DK(KP541454447, +0.541454447536312777046285590082819509052033189);     DK(KP968583161, +0.968583161128631119490168375464735813836012403);     DK(KP242145790, +0.242145790282157779872542093866183953459003101);     DK(KP904730450, +0.904730450839922351881287709692877908104763647);     DK(KP803003575, +0.803003575438660414833440593570376004635464850);     DK(KP554608978, +0.554608978404018097464974850792216217022558774);     DK(KP683113946, +0.683113946453479238701949862233725244439656928);     DK(KP559154169, +0.559154169276087864842202529084232643714075927);     DK(KP248028675, +0.248028675328619457762448260696444630363259177);     DK(KP992114701, +0.992114701314477831049793042785778521453036709);     DK(KP831864738, +0.831864738706457140726048799369896829771167132);     DK(KP871714437, +0.871714437527667770979999223229522602943903653);     DK(KP851038619, +0.851038619207379630836264138867114231259902550);     DK(KP943557151, +0.943557151597354104399655195398983005179443399);     DK(KP726211448, +0.726211448929902658173535992263577167607493062);     DK(KP525970792, +0.525970792408939708442463226536226366643874659);     DK(KP912018591, +0.912018591466481957908415381764119056233607330);     DK(KP912575812, +0.912575812670962425556968549836277086778922727);     DK(KP994076283, +0.994076283785401014123185814696322018529298887);     DK(KP614372930, +0.614372930789563808870829930444362096004872855);     DK(KP621716863, +0.621716863012209892444754556304102309693593202);     DK(KP860541664, +0.860541664367944677098261680920518816412804187);     DK(KP949179823, +0.949179823508441261575555465843363271711583843);     DK(KP557913902, +0.557913902031834264187699648465567037992437152);     DK(KP998026728, +0.998026728428271561952336806863450553336905220);     DK(KP249506682, +0.249506682107067890488084201715862638334226305);     DK(KP772036680, +0.772036680810363904029489473607579825330539880);     DK(KP906616052, +0.906616052148196230441134447086066874408359177);     DK(KP734762448, +0.734762448793050413546343770063151342619912334);     DK(KP560319534, +0.560319534973832390111614715371676131169633784);     DK(KP681693190, +0.681693190061530575150324149145440022633095390);     DK(KP845997307, +0.845997307939530944175097360758058292389769300);     DK(KP968479752, +0.968479752739016373193524836781420152702090879);     DK(KP062914667, +0.062914667253649757225485955897349402364686947);     DK(KP827271945, +0.827271945972475634034355757144307982555673741);     DK(KP470564281, +0.470564281212251493087595091036643380879947982);     DK(KP126329378, +0.126329378446108174786050455341811215027378105);     DK(KP256756360, +0.256756360367726783319498520922669048172391148);     DK(KP634619297, +0.634619297544148100711287640319130485732531031);     DK(KP549754652, +0.549754652192770074288023275540779861653779767);     DK(KP939062505, +0.939062505817492352556001843133229685779824606);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     INT m;     for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) {	  E TN, TQ, T4e, T2y, T4i, T3U, T4u, T4o, T4G, T4C, T2F, T41, T3Q, T4q, T3a;	  E T3F, T4a, T4w, T46, T44;	  {	       E TT, TO, TR, T23, T2d, T2x, TP, TV, T2p, T85, T4d, T25, TX;	       TN = W[0];	       TT = W[4];	       TO = W[2];	       TR = W[3];	       T23 = W[6];	       T2d = TN * TT;	       T2x = TO * TT;	       TP = TN * TO;	       TV = TN * TR;	       T2p = TT * T23;	       T85 = TN * T23;	       T4d = TO * T23;	       T25 = W[7];	       TQ = W[1];	       TX = W[5];	       {		    E T86, T4n, TW, T4l, TS, T71, T2q, T4z, T2e, T8a, T2u, T76, T2k, T4B, T6E;		    E T6U, T6Y, T5T, T8i, T1I, T2a, T26, TY, T8d, T8s, T8o, T5C, T5w, T7g, T7c;		    E T5M, T5I, T9, T40, T1R, T3X, T6H, T7F, T5W, T7n, T4N, T68, T1S, T1k, T1T;		    E T1D, T1Y, T1Z, T10, TM, T7K, T7A, T6p, T6w, T4X, T56, T3K, T2U, T7x, T7J;		    E T6v, T6i, T50, T57, T3L, T39, T4Q, T59, T3O, T3E, T67, T7t, T7H, T6y, T63;		    E T4T, T5a, T3N, T3p, T66, T7o;		    {			 E T2A, T2z, T6G, T2E, T5V, T6F;			 {			      E T1, T1J, T3Y, T3Z, T8, T2C, T1M, T1P, T2D, T4h, T89, T2t, T3W, T1Q, T3V;			      T1 = cr[0];			      T4e = FMA(TR, T25, T4d);			      T4h = TO * T25;			      T89 = TN * T25;			      T2t = TT * T25;			      T86 = FMA(TQ, T25, T85);			      T4n = FNMS(TQ, TO, TV);			      TW = FMA(TQ, TO, TV);			      T4l = FMA(TQ, TR, TP);			      TS = FNMS(TQ, TR, TP);			      T71 = FNMS(TR, TX, T2x);			      T2y = FMA(TR, TX, T2x);			      T2q = FMA(TX, T25, T2p);			      T4z = FMA(TQ, TX, T2d);			      T2e = FNMS(TQ, TX, T2d);			      {				   E T3T, T2j, T4t, T6T;				   T3T = TO * TX;				   T2j = TN * TX;				   T4i = FNMS(TR, T23, T4h);				   T8a = FNMS(TQ, T23, T89);				   T2u = FNMS(TX, T23, T2t);				   T4t = T4l * TX;				   T6T = T4l * T23;				   {					E T6X, T4m, T1H, T29;					T6X = T4l * T25;					T4m = T4l * TT;					T1H = TS * TX;					T29 = TS * T25;					{					     E T24, TU, T4F, T4A;					     T24 = TS * T23;					     TU = TS * TT;					     T4F = T4z * T25;					     T4A = T4z * T23;					     {						  E T8r, T8n, T5B, T5v;						  T8r = T2y * T25;						  T8n = T2y * T23;						  T5B = T2e * T25;						  T5v = T2e * T23;						  T3U = FNMS(TR, TT, T3T);						  T76 = FMA(TR, TT, T3T);						  T2k = FMA(TQ, TT, T2j);						  T4B = FNMS(TQ, TT, T2j);						  T4u = FMA(T4n, TT, T4t);						  T6E = FNMS(T4n, TT, T4t);						  T6U = FMA(T4n, T25, T6T);						  T6Y = FNMS(T4n, T23, T6X);						  T5T = FMA(T4n, TX, T4m);						  T4o = FNMS(T4n, TX, T4m);						  T8i = FMA(TW, TT, T1H);						  T1I = FNMS(TW, TT, T1H);						  T2a = FNMS(TW, T23, T29);						  T26 = FMA(TW, T25, T24);						  TY = FMA(TW, TX, TU);						  T8d = FNMS(TW, TX, TU);						  T8s = FNMS(T3U, T23, T8r);						  T8o = FMA(T3U, T25, T8n);						  T5C = FNMS(T2k, T23, T5B);						  T5w = FMA(T2k, T25, T5v);						  T4G = FNMS(T4B, T23, T4F);						  T4C = FMA(T4B, T25, T4A);						  {						       E T7f, T7b, T5L, T5H;						       T7f = T5T * T25;						       T7b = T5T * T23;						       T5L = TY * T25;						       T5H = TY * T23;						       T7g = FNMS(T6E, T23, T7f);						       T7c = FMA(T6E, T25, T7b);						       T5M = FNMS(T1I, T23, T5L);						       T5I = FMA(T1I, T25, T5H);						       T1J = ci[WS(rs, 24)];						  }					     }					}				   }			      }			      {				   E T2, T3, T5, T6;				   T2 = cr[WS(rs, 5)];				   T3 = ci[WS(rs, 4)];				   T5 = cr[WS(rs, 10)];				   T6 = ci[WS(rs, 9)];				   {					E T1K, T4, T7, T1L, T1N, T1O;					T1K = ci[WS(rs, 19)];					T3Y = T2 - T3;					T4 = T2 + T3;					T3Z = T5 - T6;					T7 = T5 + T6;					T1L = cr[WS(rs, 20)];					T1N = ci[WS(rs, 14)];					T1O = cr[WS(rs, 15)];					T8 = T4 + T7;					T2A = T4 - T7;					T2C = T1K + T1L;					T1M = T1K - T1L;					T1P = T1N - T1O;					T2D = T1N + T1O;				   }			      }			      T2z = FNMS(KP250000000, T8, T1);			      T9 = T1 + T8;			      T3W = T1M - T1P;			      T1Q = T1M + T1P;			      T40 = FMA(KP618033988, T3Z, T3Y);			      T6G = FNMS(KP618033988, T3Y, T3Z);			      T2E = FMA(KP618033988, T2D, T2C);			      T5V = FNMS(KP618033988, T2C, T2D);			      T1R = T1J + T1Q;			      T3V = FNMS(KP250000000, T1Q, T1J);			      T6F = FNMS(KP559016994, T3W, T3V);			      T3X = FMA(KP559016994, T3W, T3V);			 }			 {			      E T2S, T6n, T2H, T2G, Ti, T5Y, T3C, T3r, TK, T3q, T30, T6d, T33, Tr, T32;			      E T3v, T61, T3y, T1C, T3x, T2L, T6k, T2O, T1a, T2N, T6g, T37, T2W, Tt, T1j;			      E T2V, Tx, T3g, T3j, Tw, T3l, T1t, T3i, Ty;			      {				   E T1u, T1v, T1A, T3u, T1w;				   {					E TC, TI, T3B, TD, TE;					{					     E Ta, Te, Tf, Tb, Tc, T5U, T2B, T2R, Tg;					     Ta = cr[WS(rs, 1)];					     T5U = FNMS(KP559016994, T2A, T2z);					     T2B = FMA(KP559016994, T2A, T2z);					     T6H = FNMS(KP951056516, T6G, T6F);					     T7F = FMA(KP951056516, T6G, T6F);					     Te = cr[WS(rs, 11)];					     T5W = FMA(KP951056516, T5V, T5U);					     T7n = FNMS(KP951056516, T5V, T5U);					     T4N = FMA(KP951056516, T2E, T2B);					     T2F = FNMS(KP951056516, T2E, T2B);					     Tf = ci[WS(rs, 8)];					     Tb = cr[WS(rs, 6)];					     Tc = ci[WS(rs, 3)];					     TC = cr[WS(rs, 3)];					     T2R = Tf - Te;					     Tg = Te + Tf;					     {						  E T2Q, Td, Th, TG, TH;						  T2Q = Tb - Tc;						  Td = Tb + Tc;						  TG = ci[WS(rs, 11)];						  TH = ci[WS(rs, 6)];						  T2S = FNMS(KP618033988, T2R, T2Q);						  T6n = FMA(KP618033988, T2Q, T2R);						  Th = Td + Tg;						  T2H = Td - Tg;						  TI = TG + TH;						  T3B = TG - TH;						  T2G = FNMS(KP250000000, Th, Ta);						  Ti = Ta + Th;						  TD = cr[WS(rs, 8)];						  TE = ci[WS(rs, 1)];					     }					}					{					     E Tj, Tk, Tp, T2Z, TJ, Tl;					     Tj = cr[WS(rs, 4)];					     {						  E Tn, To, T3A, TF;						  Tn = ci[WS(rs, 10)];						  To = ci[WS(rs, 5)];						  T3A = TD - TE;						  TF = TD + TE;						  Tk = cr[WS(rs, 9)];						  Tp = Tn + To;						  T2Z = To - Tn;						  T5Y = FNMS(KP618033988, T3A, T3B);						  T3C = FMA(KP618033988, T3B, T3A);						  T3r = TI - TF;						  TJ = TF + TI;						  Tl = ci[0];					     }					     T1u = ci[WS(rs, 21)];					     TK = TC + TJ;					     T3q = FNMS(KP250000000, TJ, TC);					     {						  E T1y, Tm, T2Y, T1z, Tq;						  T1y = cr[WS(rs, 13)];						  Tm = Tk + Tl;						  T2Y = Tl - Tk;						  T1z = cr[WS(rs, 18)];						  T1v = ci[WS(rs, 16)];						  T30 = FMA(KP618033988, T2Z, T2Y);						  T6d = FNMS(KP618033988, T2Y, T2Z);						  T33 = Tm - Tp;						  Tq = Tm + Tp;						  T1A = T1y + T1z;						  T3u = T1z - T1y;						  Tr = Tj + Tq;						  T32 = FMS(KP250000000, Tq, Tj);						  T1w = cr[WS(rs, 23)];					     }					}				   }				   {					E T1b, T1c, T1h, T36, T1d;					{					     E T12, T13, T18, T2K, T1B, T14;					     T12 = ci[WS(rs, 23)];					     {						  E T16, T17, T3t, T1x;						  T16 = ci[WS(rs, 13)];						  T17 = cr[WS(rs, 16)];						  T3t = T1v + T1w;						  T1x = T1v - T1w;						  T13 = ci[WS(rs, 18)];						  T18 = T16 - T17;						  T2K = T16 + T17;						  T3v = FMA(KP618033988, T3u, T3t);						  T61 = FNMS(KP618033988, T3t, T3u);						  T3y = T1x + T1A;						  T1B = T1x - T1A;						  T14 = cr[WS(rs, 21)];					     }					     T1b = ci[WS(rs, 20)];					     T1C = T1u + T1B;					     T3x = FMS(KP250000000, T1B, T1u);					     {						  E T1f, T15, T2J, T1g, T19;						  T1f = cr[WS(rs, 14)];						  T15 = T13 - T14;						  T2J = T13 + T14;						  T1g = cr[WS(rs, 19)];						  T1c = ci[WS(rs, 15)];						  T2L = FMA(KP618033988, T2K, T2J);						  T6k = FNMS(KP618033988, T2J, T2K);						  T2O = T15 - T18;						  T19 = T15 + T18;						  T1h = T1f + T1g;						  T36 = T1g - T1f;						  T1a = T12 + T19;						  T2N = FNMS(KP250000000, T19, T12);						  T1d = cr[WS(rs, 24)];					     }					}					{					     E T1l, T1p, T1o, T3e, T1i, T1q;					     T1l = ci[WS(rs, 22)];					     {						  E T1m, T1n, T35, T1e;						  T1m = ci[WS(rs, 17)];						  T1n = cr[WS(rs, 22)];						  T35 = T1c + T1d;						  T1e = T1c - T1d;						  T1p = ci[WS(rs, 12)];						  T1o = T1m - T1n;						  T3e = T1m + T1n;						  T6g = FNMS(KP618033988, T35, T36);						  T37 = FMA(KP618033988, T36, T35);						  T2W = T1e + T1h;						  T1i = T1e - T1h;						  T1q = cr[WS(rs, 17)];					     }					     Tt = cr[WS(rs, 2)];					     T1j = T1b + T1i;					     T2V = FMS(KP250000000, T1i, T1b);					     {						  E Tu, T1r, T3f, Tv, T1s;						  Tu = cr[WS(rs, 7)];						  T1r = T1p - T1q;						  T3f = T1p + T1q;						  Tv = ci[WS(rs, 2)];						  Tx = cr[WS(rs, 12)];						  T3g = FMA(KP618033988, T3f, T3e);						  T68 = FNMS(KP618033988, T3e, T3f);						  T3j = T1o - T1r;						  T1s = T1o + T1r;						  Tw = Tu + Tv;						  T3l = Tu - Tv;						  T1t = T1l + T1s;						  T3i = FMS(KP250000000, T1s, T1l);						  Ty = ci[WS(rs, 7)];					     }					}				   }			      }			      {				   E T3n, T65, T3c, T3b, T2P, T2M, T4W;				   {					E TA, T3m, Tz, TB, Ts;					T3m = Ty - Tx;					Tz = Tx + Ty;					T1S = T1a + T1j;					T1k = T1a - T1j;					T3n = FNMS(KP618033988, T3m, T3l);					T65 = FMA(KP618033988, T3l, T3m);					TA = Tw + Tz;					T3c = Tz - Tw;					T3b = FNMS(KP250000000, TA, Tt);					TB = Tt + TA;					T1T = T1t + T1C;					T1D = T1t - T1C;					T1Y = Ti - Tr;					Ts = Ti + Tr;					{					     E T2I, T6j, T6m, TL;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -