⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hb_25.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 4 页
字号:
						  T49 = T47 * T48;						  T3X = W[20];						  T4c = T4a * T48;						  T42 = W[21];						  cr[WS(rs, 16)] = FNMS(T4a, T4b, T49);						  T41 = T3X * T40;						  ci[WS(rs, 16)] = FMA(T47, T4b, T4c);					     }					     T46 = T42 * T40;					     {						  E T3V, T3R, T3U, T3T, T3W, T3S;						  cr[WS(rs, 11)] = FNMS(T42, T45, T41);						  T3S = FMA(KP921177326, T3v, T3o);						  T3w = FNMS(KP921177326, T3v, T3o);						  ci[WS(rs, 11)] = FMA(T3X, T45, T46);						  T3V = FNMS(KP921177326, T3O, T3L);						  T3P = FMA(KP921177326, T3O, T3L);						  T3R = W[40];						  T3U = W[41];						  T2d = W[10];						  T3T = T3R * T3S;						  T3W = T3U * T3S;						  T3y = W[11];						  T3x = T2d * T3w;						  cr[WS(rs, 21)] = FNMS(T3U, T3V, T3T);						  ci[WS(rs, 21)] = FMA(T3R, T3V, T3W);					     }					}				   }			      }			 }		    }	       }	  }	  cr[WS(rs, 6)] = FNMS(T3y, T3P, T3x);	  T3Q = T3y * T3w;	  ci[WS(rs, 6)] = FMA(T2d, T3P, T3Q);     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 25},     {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 25, "hb_25", twinstr, &GENUS, {84, 48, 316, 0} };void X(codelet_hb_25) (planner *p) {     X(khc2hc_register) (p, hb_25, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -sign 1 -n 25 -dif -name hb_25 -include hb.h *//* * This function contains 400 FP additions, 280 FP multiplications, * (or, 260 additions, 140 multiplications, 140 fused multiply/add), * 107 stack variables, 20 constants, and 100 memory accesses */#include "hb.h"static void hb_25(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP998026728, +0.998026728428271561952336806863450553336905220);     DK(KP062790519, +0.062790519529313376076178224565631133122484832);     DK(KP992114701, +0.992114701314477831049793042785778521453036709);     DK(KP125333233, +0.125333233564304245373118759816508793942918247);     DK(KP425779291, +0.425779291565072648862502445744251703979973042);     DK(KP904827052, +0.904827052466019527713668647932697593970413911);     DK(KP248689887, +0.248689887164854788242283746006447968417567406);     DK(KP968583161, +0.968583161128631119490168375464735813836012403);     DK(KP770513242, +0.770513242775789230803009636396177847271667672);     DK(KP637423989, +0.637423989748689710176712811676016195434917298);     DK(KP844327925, +0.844327925502015078548558063966681505381659241);     DK(KP535826794, +0.535826794978996618271308767867639978063575346);     DK(KP684547105, +0.684547105928688673732283357621209269889519233);     DK(KP728968627, +0.728968627421411523146730319055259111372571664);     DK(KP481753674, +0.481753674101715274987191502872129653528542010);     DK(KP876306680, +0.876306680043863587308115903922062583399064238);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP587785252, +0.587785252292473129168705954639072768597652438);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     INT m;     for (m = mb, W = W + ((mb - 1) * 48); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 48, MAKE_VOLATILE_STRIDE(rs)) {	  E T9, T5Q, T3y, T39, T5v, Ti, Tr, Ts, TZ, T18, T1z, T2k, T4l, T3h, T44;	  E T5d, T6C, T5C, T6o, T56, T6B, T5B, T6l, T2z, T4m, T3i, T47, T1K, T5w, T3c;	  E T3B, T5R, TB, TK, TL, T1i, T1r, T1A, T2P, T4o, T3k, T4b, T5s, T6F, T5F;	  E T6v, T5l, T6E, T5E, T6s, T34, T4p, T3l, T4e;	  {	       E T1, T4, T7, T8, T3x, T3w, T37, T38;	       T1 = cr[0];	       {		    E T2, T3, T5, T6;		    T2 = cr[WS(rs, 5)];		    T3 = ci[WS(rs, 4)];		    T4 = T2 + T3;		    T5 = cr[WS(rs, 10)];		    T6 = ci[WS(rs, 9)];		    T7 = T5 + T6;		    T8 = T4 + T7;		    T3x = T5 - T6;		    T3w = T2 - T3;	       }	       T9 = T1 + T8;	       T5Q = FMA(KP951056516, T3w, KP587785252 * T3x);	       T3y = FNMS(KP951056516, T3x, KP587785252 * T3w);	       T37 = FNMS(KP250000000, T8, T1);	       T38 = KP559016994 * (T4 - T7);	       T39 = T37 - T38;	       T5v = T38 + T37;	  }	  {	       E Ta, T27, T53, T2f, Th, T26, T10, T2p, T58, T2x, T17, T2o, Tj, T2n, T5a;	       E T2t, Tq, T2s, TR, T2b, T51, T2h, TY, T2g;	       {		    E Tg, T2e, Td, T2d;		    Ta = cr[WS(rs, 1)];		    {			 E Te, Tf, Tb, Tc;			 Te = cr[WS(rs, 11)];			 Tf = ci[WS(rs, 8)];			 Tg = Te + Tf;			 T2e = Te - Tf;			 Tb = cr[WS(rs, 6)];			 Tc = ci[WS(rs, 3)];			 Td = Tb + Tc;			 T2d = Tb - Tc;		    }		    T27 = KP559016994 * (Td - Tg);		    T53 = FMA(KP951056516, T2d, KP587785252 * T2e);		    T2f = FNMS(KP951056516, T2e, KP587785252 * T2d);		    Th = Td + Tg;		    T26 = FNMS(KP250000000, Th, Ta);	       }	       {		    E T16, T2w, T13, T2v;		    T10 = ci[WS(rs, 20)];		    {			 E T14, T15, T11, T12;			 T14 = cr[WS(rs, 14)];			 T15 = cr[WS(rs, 19)];			 T16 = T14 + T15;			 T2w = T15 - T14;			 T11 = ci[WS(rs, 15)];			 T12 = cr[WS(rs, 24)];			 T13 = T11 - T12;			 T2v = T11 + T12;		    }		    T2p = KP559016994 * (T13 + T16);		    T58 = FMA(KP951056516, T2v, KP587785252 * T2w);		    T2x = FNMS(KP951056516, T2w, KP587785252 * T2v);		    T17 = T13 - T16;		    T2o = FNMS(KP250000000, T17, T10);	       }	       {		    E Tp, T2m, Tm, T2l;		    Tj = cr[WS(rs, 4)];		    {			 E Tn, To, Tk, Tl;			 Tn = ci[WS(rs, 10)];			 To = ci[WS(rs, 5)];			 Tp = Tn + To;			 T2m = Tn - To;			 Tk = cr[WS(rs, 9)];			 Tl = ci[0];			 Tm = Tk + Tl;			 T2l = Tk - Tl;		    }		    T2n = FNMS(KP951056516, T2m, KP587785252 * T2l);		    T5a = FMA(KP951056516, T2l, KP587785252 * T2m);		    T2t = KP559016994 * (Tm - Tp);		    Tq = Tm + Tp;		    T2s = FNMS(KP250000000, Tq, Tj);	       }	       {		    E TX, T2a, TU, T29;		    TR = ci[WS(rs, 23)];		    {			 E TV, TW, TS, TT;			 TV = ci[WS(rs, 13)];			 TW = cr[WS(rs, 16)];			 TX = TV - TW;			 T2a = TV + TW;			 TS = ci[WS(rs, 18)];			 TT = cr[WS(rs, 21)];			 TU = TS - TT;			 T29 = TS + TT;		    }		    T2b = FNMS(KP951056516, T2a, KP587785252 * T29);		    T51 = FMA(KP951056516, T29, KP587785252 * T2a);		    T2h = KP559016994 * (TU - TX);		    TY = TU + TX;		    T2g = FNMS(KP250000000, TY, TR);	       }	       Ti = Ta + Th;	       Tr = Tj + Tq;	       Ts = Ti + Tr;	       TZ = TR + TY;	       T18 = T10 + T17;	       T1z = TZ + T18;	       {		    E T2c, T42, T2j, T43, T28, T2i;		    T28 = T26 - T27;		    T2c = T28 - T2b;		    T42 = T28 + T2b;		    T2i = T2g - T2h;		    T2j = T2f + T2i;		    T43 = T2i - T2f;		    T2k = FNMS(KP481753674, T2j, KP876306680 * T2c);		    T4l = FMA(KP728968627, T43, KP684547105 * T42);		    T3h = FMA(KP876306680, T2j, KP481753674 * T2c);		    T44 = FNMS(KP684547105, T43, KP728968627 * T42);	       }	       {		    E T59, T6n, T5c, T6m, T57, T5b;		    T57 = T2t + T2s;		    T59 = T57 - T58;		    T6n = T57 + T58;		    T5b = T2o + T2p;		    T5c = T5a + T5b;		    T6m = T5b - T5a;		    T5d = FNMS(KP844327925, T5c, KP535826794 * T59);		    T6C = FMA(KP637423989, T6m, KP770513242 * T6n);		    T5C = FMA(KP535826794, T5c, KP844327925 * T59);		    T6o = FNMS(KP637423989, T6n, KP770513242 * T6m);	       }	       {		    E T52, T6j, T55, T6k, T50, T54;		    T50 = T27 + T26;		    T52 = T50 - T51;		    T6j = T50 + T51;		    T54 = T2h + T2g;		    T55 = T53 + T54;		    T6k = T54 - T53;		    T56 = FNMS(KP248689887, T55, KP968583161 * T52);		    T6B = FMA(KP535826794, T6k, KP844327925 * T6j);		    T5B = FMA(KP968583161, T55, KP248689887 * T52);		    T6l = FNMS(KP844327925, T6k, KP535826794 * T6j);	       }	       {		    E T2r, T45, T2y, T46, T2q, T2u;		    T2q = T2o - T2p;		    T2r = T2n + T2q;		    T45 = T2q - T2n;		    T2u = T2s - T2t;		    T2y = T2u - T2x;		    T46 = T2u + T2x;		    T2z = FMA(KP904827052, T2r, KP425779291 * T2y);		    T4m = FNMS(KP992114701, T45, KP125333233 * T46);		    T3i = FNMS(KP425779291, T2r, KP904827052 * T2y);		    T47 = FMA(KP125333233, T45, KP992114701 * T46);	       }	  }	  {	       E T1C, T1F, T1I, T1J, T3b, T3a, T3z, T3A;	       T1C = ci[WS(rs, 24)];	       {		    E T1D, T1E, T1G, T1H;		    T1D = ci[WS(rs, 19)];		    T1E = cr[WS(rs, 20)];		    T1F = T1D - T1E;		    T1G = ci[WS(rs, 14)];		    T1H = cr[WS(rs, 15)];		    T1I = T1G - T1H;		    T1J = T1F + T1I;		    T3b = T1G + T1H;		    T3a = T1D + T1E;	       }	       T1K = T1C + T1J;	       T5w = FMA(KP951056516, T3a, KP587785252 * T3b);	       T3c = FNMS(KP951056516, T3b, KP587785252 * T3a);	       T3z = FNMS(KP250000000, T1J, T1C);	       T3A = KP559016994 * (T1F - T1I);	       T3B = T3z - T3A;	       T5R = T3A + T3z;	  }	  {	       E Tt, T2C, T5i, T2K, TA, T2B, T1a, T2G, T5g, T2M, T1h, T2L, TC, T2R, T5p;	       E T2Z, TJ, T2Q, T1j, T2V, T5n, T31, T1q, T30;	       {		    E Tw, T2I, Tz, T2J;		    Tt = cr[WS(rs, 2)];		    {			 E Tu, Tv, Tx, Ty;			 Tu = cr[WS(rs, 7)];			 Tv = ci[WS(rs, 2)];			 Tw = Tu + Tv;			 T2I = Tu - Tv;			 Tx = cr[WS(rs, 12)];			 Ty = ci[WS(rs, 7)];			 Tz = Tx + Ty;			 T2J = Tx - Ty;		    }		    T2C = KP559016994 * (Tw - Tz);		    T5i = FMA(KP951056516, T2I, KP587785252 * T2J);		    T2K = FNMS(KP951056516, T2J, KP587785252 * T2I);		    TA = Tw + Tz;		    T2B = FNMS(KP250000000, TA, Tt);	       }	       {		    E T1d, T2E, T1g, T2F;		    T1a = ci[WS(rs, 22)];		    {			 E T1b, T1c, T1e, T1f;			 T1b = ci[WS(rs, 17)];			 T1c = cr[WS(rs, 22)];			 T1d = T1b - T1c;			 T2E = T1b + T1c;			 T1e = ci[WS(rs, 12)];			 T1f = cr[WS(rs, 17)];			 T1g = T1e - T1f;			 T2F = T1e + T1f;		    }		    T2G = FNMS(KP951056516, T2F, KP587785252 * T2E);		    T5g = FMA(KP951056516, T2E, KP587785252 * T2F);		    T2M = KP559016994 * (T1d - T1g);		    T1h = T1d + T1g;		    T2L = FNMS(KP250000000, T1h, T1a);	       }	       {		    E TI, T2Y, TF, T2X;		    TC = cr[WS(rs, 3)];		    {			 E TG, TH, TD, TE;			 TG = ci[WS(rs, 11)];			 TH = ci[WS(rs, 6)];			 TI = TG + TH;			 T2Y = TG - TH;			 TD = cr[WS(rs, 8)];			 TE = ci[WS(rs, 1)];			 TF = TD + TE;			 T2X = TD - TE;		    }		    T2R = KP559016994 * (TF - TI);		    T5p = FMA(KP951056516, T2X, KP587785252 * T2Y);		    T2Z = FNMS(KP951056516, T2Y, KP587785252 * T2X);		    TJ = TF + TI;		    T2Q = FNMS(KP250000000, TJ, TC);	       }	       {		    E T1p, T2U, T1m, T2T;		    T1j = ci[WS(rs, 21)];		    {			 E T1n, T1o, T1k, T1l;			 T1n = cr[WS(rs, 13)];			 T1o = cr[WS(rs, 18)];			 T1p = T1n + T1o;			 T2U = T1o - T1n;			 T1k = ci[WS(rs, 16)];			 T1l = cr[WS(rs, 23)];			 T1m = T1k - T1l;			 T2T = T1k + T1l;		    }		    T2V = FNMS(KP951056516, T2U, KP587785252 * T2T);		    T5n = FMA(KP951056516, T2T, KP587785252 * T2U);		    T31 = KP559016994 * (T1m + T1p);		    T1q = T1m - T1p;		    T30 = FNMS(KP250000000, T1q, T1j);	       }	       TB = Tt + TA;	       TK = TC + TJ;	       TL = TB + TK;	       T1i = T1a + T1h;	       T1r = T1j + T1q;	       T1A = T1i + T1r;	       {		    E T2H, T49, T2O, T4a, T2D, T2N;		    T2D = T2B - T2C;		    T2H = T2D - T2G;		    T49 = T2D + T2G;		    T2N = T2L - T2M;		    T2O = T2K + T2N;		    T4a = T2N - T2K;		    T2P = FNMS(KP844327925, T2O, KP535826794 * T2H);		    T4o = FMA(KP062790519, T4a, KP998026728 * T49);		    T3k = FMA(KP535826794, T2O, KP844327925 * T2H);		    T4b = FNMS(KP998026728, T4a, KP062790519 * T49);	       }	       {		    E T5o, T6u, T5r, T6t, T5m, T5q;		    T5m = T2R + T2Q;		    T5o = T5m - T5n;		    T6u = T5m + T5n;		    T5q = T30 + T31;		    T5r = T5p + T5q;		    T6t = T5q - T5p;		    T5s = FNMS(KP684547105, T5r, KP728968627 * T5o);		    T6F = FNMS(KP992114701, T6t, KP125333233 * T6u);		    T5F = FMA(KP728968627, T5r, KP684547105 * T5o);		    T6v = FMA(KP125333233, T6t, KP992114701 * T6u);	       }	       {		    E T5h, T6r, T5k, T6q, T5f, T5j;		    T5f = T2C + T2B;		    T5h = T5f - T5g;		    T6r = T5f + T5g;		    T5j = T2M + T2L;		    T5k = T5i + T5j;		    T6q = T5j - T5i;		    T5l = FNMS(KP481753674, T5k, KP876306680 * T5h);		    T6E = FNMS(KP425779291, T6q, KP904827052 * T6r);		    T5E = FMA(KP876306680, T5k, KP481753674 * T5h);		    T6s = FMA(KP904827052, T6q, KP425779291 * T6r);	       }	       {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -