⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cb_20.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:11:10 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2c -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include hc2cb.h *//* * This function contains 246 FP additions, 148 FP multiplications, * (or, 136 additions, 38 multiplications, 110 fused multiply/add), * 112 stack variables, 4 constants, and 80 memory accesses */#include "hc2cb.h"static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     INT m;     for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {	  E T1T, T1Q, T1P;	  {	       E T3z, T4z, TE, T7, T2W, T4e, T2l, T1t, T33, T3H, T3G, T3a, T1i, T2g, T13;	       E T4H, T4G, T2d, T1B, T4u, T4B, T4A, T4r, T1A, T2s, T3l, T2t, T3s, T2o, T2q;	       E T1w, T1y, TC, T29, T3E, T3C, T4n, T4l, TN, TL;	       {		    E T4, T2U, T3, T3x, T1p, T5, T1q, T1r;		    {			 E T1, T2, T1n, T1o;			 T1 = Rp[0];			 T2 = Rm[WS(rs, 9)];			 T1n = Ip[0];			 T1o = Im[WS(rs, 9)];			 T4 = Rp[WS(rs, 5)];			 T2U = T1 - T2;			 T3 = T1 + T2;			 T3x = T1n + T1o;			 T1p = T1n - T1o;			 T5 = Rm[WS(rs, 4)];			 T1q = Ip[WS(rs, 5)];			 T1r = Im[WS(rs, 4)];		    }		    {			 E T3o, T4p, TF, Te, T2Z, T4f, T2b, T1a, T3k, T4t, TJ, TA, T39, T4j, T2f;			 E T12, T3r, T4q, TG, Tl, T32, T4g, T2c, T1h, Tq, T34, Tp, T3f, TR, Tr;			 E TS, TT;			 {			      E Tx, T37, Tw, T3j, TY, Ty, TZ, T10;			      {				   E Tb, T2X, Ta, T3m, T16, Tc, T17, T18;				   {					E T8, T9, T14, T15;					T8 = Rp[WS(rs, 4)];					{					     E T3y, T6, T2V, T1s;					     T3y = T4 - T5;					     T6 = T4 + T5;					     T2V = T1q + T1r;					     T1s = T1q - T1r;					     T3z = T3x - T3y;					     T4z = T3y + T3x;					     TE = T3 - T6;					     T7 = T3 + T6;					     T2W = T2U + T2V;					     T4e = T2U - T2V;					     T2l = T1p + T1s;					     T1t = T1p - T1s;					     T9 = Rm[WS(rs, 5)];					}					T14 = Ip[WS(rs, 4)];					T15 = Im[WS(rs, 5)];					Tb = Rp[WS(rs, 9)];					T2X = T8 - T9;					Ta = T8 + T9;					T3m = T14 + T15;					T16 = T14 - T15;					Tc = Rm[0];					T17 = Ip[WS(rs, 9)];					T18 = Im[0];				   }				   {					E Tu, Tv, TW, TX;					Tu = Rm[WS(rs, 7)];					{					     E T3n, Td, T2Y, T19;					     T3n = Tb - Tc;					     Td = Tb + Tc;					     T2Y = T17 + T18;					     T19 = T17 - T18;					     T3o = T3m - T3n;					     T4p = T3n + T3m;					     TF = Ta - Td;					     Te = Ta + Td;					     T2Z = T2X + T2Y;					     T4f = T2X - T2Y;					     T2b = T16 + T19;					     T1a = T16 - T19;					     Tv = Rp[WS(rs, 2)];					}					TW = Ip[WS(rs, 2)];					TX = Im[WS(rs, 7)];					Tx = Rm[WS(rs, 2)];					T37 = Tu - Tv;					Tw = Tu + Tv;					T3j = TW + TX;					TY = TW - TX;					Ty = Rp[WS(rs, 7)];					TZ = Ip[WS(rs, 7)];					T10 = Im[WS(rs, 2)];				   }			      }			      {				   E Ti, T30, Th, T3q, T1d, Tj, T1e, T1f;				   {					E Tf, Tg, T1b, T1c;					Tf = Rm[WS(rs, 3)];					{					     E T3i, Tz, T38, T11;					     T3i = Tx - Ty;					     Tz = Tx + Ty;					     T38 = TZ + T10;					     T11 = TZ - T10;					     T3k = T3i + T3j;					     T4t = T3i - T3j;					     TJ = Tw - Tz;					     TA = Tw + Tz;					     T39 = T37 - T38;					     T4j = T37 + T38;					     T2f = TY + T11;					     T12 = TY - T11;					     Tg = Rp[WS(rs, 6)];					}					T1b = Ip[WS(rs, 6)];					T1c = Im[WS(rs, 3)];					Ti = Rp[WS(rs, 1)];					T30 = Tf - Tg;					Th = Tf + Tg;					T3q = T1b + T1c;					T1d = T1b - T1c;					Tj = Rm[WS(rs, 8)];					T1e = Ip[WS(rs, 1)];					T1f = Im[WS(rs, 8)];				   }				   {					E Tn, To, TP, TQ;					Tn = Rp[WS(rs, 8)];					{					     E T3p, Tk, T31, T1g;					     T3p = Ti - Tj;					     Tk = Ti + Tj;					     T31 = T1e + T1f;					     T1g = T1e - T1f;					     T3r = T3p + T3q;					     T4q = T3p - T3q;					     TG = Th - Tk;					     Tl = Th + Tk;					     T32 = T30 + T31;					     T4g = T30 - T31;					     T2c = T1d + T1g;					     T1h = T1d - T1g;					     To = Rm[WS(rs, 1)];					}					TP = Ip[WS(rs, 8)];					TQ = Im[WS(rs, 1)];					Tq = Rm[WS(rs, 6)];					T34 = Tn - To;					Tp = Tn + To;					T3f = TP + TQ;					TR = TP - TQ;					Tr = Rp[WS(rs, 3)];					TS = Ip[WS(rs, 3)];					TT = Im[WS(rs, 6)];				   }			      }			 }			 {			      E T3h, Tt, T1u, T2n, T1v, T4k, T4h, T2m, TH, TK, T4s, TI;			      T33 = T2Z + T32;			      T3H = T2Z - T32;			      {				   E T3g, Ts, T35, TU;				   T3g = Tq - Tr;				   Ts = Tq + Tr;				   T35 = TS + TT;				   TU = TS - TT;				   T3h = T3f - T3g;				   T4s = T3g + T3f;				   TI = Tp - Ts;				   Tt = Tp + Ts;				   {					E T36, T4i, T2e, TV;					T36 = T34 - T35;					T4i = T34 + T35;					T2e = TR + TU;					TV = TR - TU;					T3G = T36 - T39;					T3a = T36 + T39;					T1u = T1a + T1h;					T1i = T1a - T1h;					T2g = T2e - T2f;					T2n = T2e + T2f;					T1v = TV + T12;					T13 = TV - T12;					T4H = T4i - T4j;					T4k = T4i + T4j;				   }			      }			      T4h = T4f + T4g;			      T4G = T4f - T4g;			      T2d = T2b - T2c;			      T2m = T2b + T2c;			      TH = TF + TG;			      T1B = TF - TG;			      T4u = T4s - T4t;			      T4B = T4s + T4t;			      T4A = T4p + T4q;			      T4r = T4p - T4q;			      T1A = TI - TJ;			      TK = TI + TJ;			      {				   E Tm, T3B, TB, T3A;				   Tm = Te + Tl;				   T2s = Te - Tl;				   T3l = T3h + T3k;				   T3B = T3h - T3k;				   TB = Tt + TA;				   T2t = Tt - TA;				   T3s = T3o + T3r;				   T3A = T3o - T3r;				   T2o = T2m + T2n;				   T2q = T2m - T2n;				   T1w = T1u + T1v;				   T1y = T1u - T1v;				   TC = Tm + TB;				   T29 = Tm - TB;				   T3E = T3A - T3B;				   T3C = T3A + T3B;				   T4n = T4h - T4k;				   T4l = T4h + T4k;				   TN = TH - TK;				   TL = TH + TK;			      }			 }		    }	       }	       {		    E T3d, T3b, T4E, T1x, TM, T4m, T58, T5b, T4D, T5a, T5c, T59, T4C;		    Rp[0] = T7 + TC;		    T3d = T33 - T3a;		    T3b = T33 + T3a;		    T4E = T4A - T4B;		    T4C = T4A + T4B;		    Rm[0] = T2l + T2o;		    {			 E T25, T22, T21, T24, T23, T26, T57;			 T1x = FNMS(KP250000000, T1w, T1t);			 T25 = T1t + T1w;			 T22 = TE + TL;			 TM = FNMS(KP250000000, TL, TE);			 T21 = W[18];			 T24 = W[19];			 T4m = FNMS(KP250000000, T4l, T4e);			 T58 = T4e + T4l;			 T5b = T4z + T4C;			 T4D = FNMS(KP250000000, T4C, T4z);			 T23 = T21 * T22;			 T26 = T24 * T22;			 T57 = W[8];			 T5a = W[9];			 Rp[WS(rs, 5)] = FNMS(T24, T25, T23);			 Rm[WS(rs, 5)] = FMA(T21, T25, T26);			 T5c = T57 * T5b;			 T59 = T57 * T58;		    }		    {			 E T3U, T3Z, T3W, T40, T3V;			 {			      E T3c, T48, T4b, T3D, T47, T4a;			      T3c = FNMS(KP250000000, T3b, T2W);			      T48 = T2W + T3b;			      T4b = T3z + T3C;			      T3D = FNMS(KP250000000, T3C, T3z);			      Im[WS(rs, 2)] = FMA(T5a, T58, T5c);			      Ip[WS(rs, 2)] = FNMS(T5a, T5b, T59);			      T47 = W[28];			      T4a = W[29];			      {				   E T3I, T3Y, T42, T3u, T3M, T3X, T3F;				   {					E T3T, T3t, T4c, T49, T3e, T3S;					T3T = FMA(KP618033988, T3l, T3s);					T3t = FNMS(KP618033988, T3s, T3l);					T4c = T47 * T4b;					T49 = T47 * T48;					T3I = FNMS(KP618033988, T3H, T3G);					T3Y = FMA(KP618033988, T3G, T3H);					Im[WS(rs, 7)] = FMA(T4a, T48, T4c);					Ip[WS(rs, 7)] = FNMS(T4a, T4b, T49);					T3e = FNMS(KP559016994, T3d, T3c);					T3S = FMA(KP559016994, T3d, T3c);					T42 = FMA(KP951056516, T3T, T3S);					T3U = FNMS(KP951056516, T3T, T3S);					T3u = FNMS(KP951056516, T3t, T3e);					T3M = FMA(KP951056516, T3t, T3e);					T3X = FMA(KP559016994, T3E, T3D);					T3F = FNMS(KP559016994, T3E, T3D);				   }				   {					E T3P, T45, T44, T46, T43;					{					     E T3w, T3J, T3v, T3K, T2T, T41;					     T2T = W[4];					     T3w = W[5];					     T3J = FMA(KP951056516, T3I, T3F);					     T3P = FNMS(KP951056516, T3I, T3F);					     T45 = FNMS(KP951056516, T3Y, T3X);					     T3Z = FMA(KP951056516, T3Y, T3X);					     T3v = T2T * T3u;					     T3K = T2T * T3J;					     T41 = W[36];					     T44 = W[37];					     Ip[WS(rs, 1)] = FNMS(T3w, T3J, T3v);					     Im[WS(rs, 1)] = FMA(T3w, T3u, T3K);					     T46 = T41 * T45;					     T43 = T41 * T42;					}					{					     E T3O, T3Q, T3N, T3L, T3R;					     T3L = W[12];					     T3O = W[13];					     Im[WS(rs, 9)] = FMA(T44, T42, T46);					     Ip[WS(rs, 9)] = FNMS(T44, T45, T43);					     T3Q = T3L * T3P;					     T3N = T3L * T3M;					     T3R = W[20];					     T3W = W[21];					     Im[WS(rs, 3)] = FMA(T3O, T3M, T3Q);					     Ip[WS(rs, 3)] = FNMS(T3O, T3P, T3N);					     T40 = T3R * T3Z;					     T3V = T3R * T3U;					}				   }			      }			 }			 {			      E T4U, T4Z, T4W, T50, T4V, T2L, T2I, T2H;			      {				   E T4T, T4v, T4I, T4Y, T4o, T4S;				   T4T = FNMS(KP618033988, T4r, T4u);				   T4v = FMA(KP618033988, T4u, T4r);				   Im[WS(rs, 5)] = FMA(T3W, T3U, T40);				   Ip[WS(rs, 5)] = FNMS(T3W, T3Z, T3V);				   T4I = FMA(KP618033988, T4H, T4G);				   T4Y = FNMS(KP618033988, T4G, T4H);				   T4o = FMA(KP559016994, T4n, T4m);				   T4S = FNMS(KP559016994, T4n, T4m);				   {					E T52, T4M, T55, T4P, T54, T56, T53;					{					     E T4d, T4w, T4J, T4x, T4y, T4X, T4F, T51, T4K;					     T4d = W[0];					     T4X = FNMS(KP559016994, T4E, T4D);					     T4F = FMA(KP559016994, T4E, T4D);					     T4U = FNMS(KP951056516, T4T, T4S);					     T52 = FMA(KP951056516, T4T, T4S);					     T4M = FMA(KP951056516, T4v, T4o);					     T4w = FNMS(KP951056516, T4v, T4o);					     T4Z = FMA(KP951056516, T4Y, T4X);					     T55 = FNMS(KP951056516, T4Y, T4X);					     T4P = FNMS(KP951056516, T4I, T4F);					     T4J = FMA(KP951056516, T4I, T4F);					     T4x = T4d * T4w;					     T4y = W[1];					     T51 = W[32];					     T4K = T4d * T4J;					     T54 = W[33];					     Ip[0] = FNMS(T4y, T4J, T4x);					     T56 = T51 * T55;					     T53 = T51 * T52;					     Im[0] = FMA(T4y, T4w, T4K);					}					{					     E T4O, T4Q, T4N, T4L, T4R;					     T4L = W[16];					     Im[WS(rs, 8)] = FMA(T54, T52, T56);					     Ip[WS(rs, 8)] = FNMS(T54, T55, T53);					     T4O = W[17];					     T4Q = T4L * T4P;					     T4N = T4L * T4M;					     T4R = W[24];					     T4W = W[25];					     Im[WS(rs, 4)] = FMA(T4O, T4M, T4Q);					     Ip[WS(rs, 4)] = FNMS(T4O, T4P, T4N);					     T50 = T4R * T4Z;					     T4V = T4R * T4U;					}				   }			      }			      {				   E T2K, T2u, T2F, T2h, T28, T2J, T2r, T2p;				   T2K = FNMS(KP618033988, T2s, T2t);				   T2u = FMA(KP618033988, T2t, T2s);				   Im[WS(rs, 6)] = FMA(T4W, T4U, T50);				   Ip[WS(rs, 6)] = FNMS(T4W, T4Z, T4V);				   T2p = FNMS(KP250000000, T2o, T2l);				   T2F = FNMS(KP618033988, T2d, T2g);				   T2h = FMA(KP618033988, T2g, T2d);				   T28 = FNMS(KP250000000, TC, T7);				   T2J = FNMS(KP559016994, T2q, T2p);				   T2r = FMA(KP559016994, T2q, T2p);				   {					E T2B, T2G, T2y, T2R, T2Q, T2P, T2A, T2x;					{					     E T2k, T2v, T27, T2O, T2i, T2a, T2E;					     T2k = W[7];					     T2a = FMA(KP559016994, T29, T28);					     T2E = FNMS(KP559016994, T29, T28);					     T2B = FMA(KP951056516, T2u, T2r);					     T2v = FNMS(KP951056516, T2u, T2r);					     T27 = W[6];					     T2O = FMA(KP951056516, T2F, T2E);					     T2G = FNMS(KP951056516, T2F, T2E);					     T2i = FMA(KP951056516, T2h, T2a);					     T2y = FNMS(KP951056516, T2h, T2a);					     {						  E T2N, T2j, T2w, T2S;						  T2L = FMA(KP951056516, T2K, T2J);						  T2R = FNMS(KP951056516, T2K, T2J);						  T2Q = W[23];						  T2N = W[22];						  T2j = T27 * T2i;						  T2w = T2k * T2i;						  T2S = T2Q * T2O;						  T2P = T2N * T2O;						  Rp[WS(rs, 2)] = FNMS(T2k, T2v, T2j);						  Rm[WS(rs, 2)] = FMA(T27, T2v, T2w);						  Rm[WS(rs, 6)] = FMA(T2N, T2R, T2S);					     }					}					Rp[WS(rs, 6)] = FNMS(T2Q, T2R, T2P);					T2A = W[31];					T2x = W[30];					{					     E T2D, T2M, T2C, T2z;					     T2I = W[15];					     T2C = T2A * T2y;					     T2z = T2x * T2y;					     T2D = W[14];					     T2M = T2I * T2G;					     Rm[WS(rs, 8)] = FMA(T2x, T2B, T2C);					     Rp[WS(rs, 8)] = FNMS(T2A, T2B, T2z);					     T2H = T2D * T2G;					     Rm[WS(rs, 4)] = FMA(T2D, T2L, T2M);					}				   }			      }			      {				   E T1S, T1C, T1j, T1N, T1z, T1R;				   T1S = FMA(KP618033988, T1A, T1B);				   T1C = FNMS(KP618033988, T1B, T1A);				   Rp[WS(rs, 4)] = FNMS(T2I, T2L, T2H);				   T1j = FNMS(KP618033988, T1i, T13);				   T1N = FMA(KP618033988, T13, T1i);				   T1z = FNMS(KP559016994, T1y, T1x);				   T1R = FMA(KP559016994, T1y, T1x);				   {					E T1J, T1O, T1G, T1Z, T1Y, T1X, T1I, T1F;					{					     E T1m, T1D, TD, T1W, T1k, T1M, TO;					     T1m = W[3];					     T1M = FMA(KP559016994, TN, TM);					     TO = FNMS(KP559016994, TN, TM);					     T1D = FNMS(KP951056516, T1C, T1z);					     T1J = FMA(KP951056516, T1C, T1z);					     TD = W[2];					     T1O = FNMS(KP951056516, T1N, T1M);					     T1W = FMA(KP951056516, T1N, T1M);					     T1G = FNMS(KP951056516, T1j, TO);					     T1k = FMA(KP951056516, T1j, TO);					     {						  E T1V, T1l, T1E, T20;						  T1Z = FNMS(KP951056516, T1S, T1R);						  T1T = FMA(KP951056516, T1S, T1R);						  T1Y = W[27];						  T1V = W[26];						  T1l = TD * T1k;						  T1E = T1m * T1k;						  T20 = T1Y * T1W;						  T1X = T1V * T1W;						  Rp[WS(rs, 1)] = FNMS(T1m, T1D, T1l);						  Rm[WS(rs, 1)] = FMA(TD, T1D, T1E);						  Rm[WS(rs, 7)] = FMA(T1V, T1Z, T20);					     }					}					Rp[WS(rs, 7)] = FNMS(T1Y, T1Z, T1X);					T1I = W[35];					T1F = W[34];					{					     E T1L, T1U, T1K, T1H;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -