⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cb_32.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 4 页
字号:
				   }			      }			 }		    }	       }	  }	  T5p = T5n * T5o;	  Im[WS(rs, 3)] = FMA(T5n, T5r, T5s);	  Ip[WS(rs, 3)] = FNMS(T5q, T5r, T5p);     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 32},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 32, "hc2cb_32", twinstr, &GENUS, {236, 62, 198, 0} };void X(codelet_hc2cb_32) (planner *p) {     X(khc2c_register) (p, hc2cb_32, &desc, HC2C_VIA_RDFT);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2c -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cb_32 -include hc2cb.h *//* * This function contains 434 FP additions, 208 FP multiplications, * (or, 340 additions, 114 multiplications, 94 fused multiply/add), * 98 stack variables, 7 constants, and 128 memory accesses */#include "hc2cb.h"static void hc2cb_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP555570233, +0.555570233019602224742830813948532874374937191);     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP195090322, +0.195090322016128267848284868477022240927691618);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT m;     for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(rs)) {	  E T4o, T6y, T70, T5u, Tf, T12, T5x, T6z, T3m, T3Y, T29, T2y, T4v, T71, T2U;	  E T3M, Tu, T1U, T6D, T73, T6G, T74, T1h, T2z, T2X, T3o, T4D, T5A, T4K, T5z;	  E T30, T3n, TK, T1j, T6S, T7w, T6V, T7v, T1y, T2B, T3c, T3S, T4X, T61, T54;	  E T62, T3f, T3T, TZ, T1A, T6L, T7z, T6O, T7y, T1P, T2C, T35, T3P, T5g, T64;	  E T5n, T65, T38, T3Q;	  {	       E T3, T4m, T1X, T5t, T6, T5s, T20, T4n, Ta, T4p, T24, T4q, Td, T4s, T27;	       E T4t;	       {		    E T1, T2, T1V, T1W;		    T1 = Rp[0];		    T2 = Rm[WS(rs, 15)];		    T3 = T1 + T2;		    T4m = T1 - T2;		    T1V = Ip[0];		    T1W = Im[WS(rs, 15)];		    T1X = T1V - T1W;		    T5t = T1V + T1W;	       }	       {		    E T4, T5, T1Y, T1Z;		    T4 = Rp[WS(rs, 8)];		    T5 = Rm[WS(rs, 7)];		    T6 = T4 + T5;		    T5s = T4 - T5;		    T1Y = Ip[WS(rs, 8)];		    T1Z = Im[WS(rs, 7)];		    T20 = T1Y - T1Z;		    T4n = T1Y + T1Z;	       }	       {		    E T8, T9, T22, T23;		    T8 = Rp[WS(rs, 4)];		    T9 = Rm[WS(rs, 11)];		    Ta = T8 + T9;		    T4p = T8 - T9;		    T22 = Ip[WS(rs, 4)];		    T23 = Im[WS(rs, 11)];		    T24 = T22 - T23;		    T4q = T22 + T23;	       }	       {		    E Tb, Tc, T25, T26;		    Tb = Rm[WS(rs, 3)];		    Tc = Rp[WS(rs, 12)];		    Td = Tb + Tc;		    T4s = Tb - Tc;		    T25 = Ip[WS(rs, 12)];		    T26 = Im[WS(rs, 3)];		    T27 = T25 - T26;		    T4t = T25 + T26;	       }	       {		    E T7, Te, T21, T28;		    T4o = T4m - T4n;		    T6y = T4m + T4n;		    T70 = T5t - T5s;		    T5u = T5s + T5t;		    T7 = T3 + T6;		    Te = Ta + Td;		    Tf = T7 + Te;		    T12 = T7 - Te;		    {			 E T5v, T5w, T3k, T3l;			 T5v = T4p + T4q;			 T5w = T4s + T4t;			 T5x = KP707106781 * (T5v - T5w);			 T6z = KP707106781 * (T5v + T5w);			 T3k = T1X - T20;			 T3l = Ta - Td;			 T3m = T3k - T3l;			 T3Y = T3l + T3k;		    }		    T21 = T1X + T20;		    T28 = T24 + T27;		    T29 = T21 - T28;		    T2y = T21 + T28;		    {			 E T4r, T4u, T2S, T2T;			 T4r = T4p - T4q;			 T4u = T4s - T4t;			 T4v = KP707106781 * (T4r + T4u);			 T71 = KP707106781 * (T4r - T4u);			 T2S = T3 - T6;			 T2T = T27 - T24;			 T2U = T2S - T2T;			 T3M = T2S + T2T;		    }	       }	  }	  {	       E Ti, T4H, T1c, T4F, Tl, T4E, T1f, T4I, Tp, T4A, T15, T4y, Ts, T4x, T18;	       E T4B;	       {		    E Tg, Th, T1a, T1b;		    Tg = Rp[WS(rs, 2)];		    Th = Rm[WS(rs, 13)];		    Ti = Tg + Th;		    T4H = Tg - Th;		    T1a = Ip[WS(rs, 2)];		    T1b = Im[WS(rs, 13)];		    T1c = T1a - T1b;		    T4F = T1a + T1b;	       }	       {		    E Tj, Tk, T1d, T1e;		    Tj = Rp[WS(rs, 10)];		    Tk = Rm[WS(rs, 5)];		    Tl = Tj + Tk;		    T4E = Tj - Tk;		    T1d = Ip[WS(rs, 10)];		    T1e = Im[WS(rs, 5)];		    T1f = T1d - T1e;		    T4I = T1d + T1e;	       }	       {		    E Tn, To, T13, T14;		    Tn = Rm[WS(rs, 1)];		    To = Rp[WS(rs, 14)];		    Tp = Tn + To;		    T4A = Tn - To;		    T13 = Ip[WS(rs, 14)];		    T14 = Im[WS(rs, 1)];		    T15 = T13 - T14;		    T4y = T13 + T14;	       }	       {		    E Tq, Tr, T16, T17;		    Tq = Rp[WS(rs, 6)];		    Tr = Rm[WS(rs, 9)];		    Ts = Tq + Tr;		    T4x = Tq - Tr;		    T16 = Ip[WS(rs, 6)];		    T17 = Im[WS(rs, 9)];		    T18 = T16 - T17;		    T4B = T16 + T17;	       }	       {		    E Tm, Tt, T6B, T6C;		    Tm = Ti + Tl;		    Tt = Tp + Ts;		    Tu = Tm + Tt;		    T1U = Tm - Tt;		    T6B = T4H + T4I;		    T6C = T4F - T4E;		    T6D = FNMS(KP923879532, T6C, KP382683432 * T6B);		    T73 = FMA(KP382683432, T6C, KP923879532 * T6B);	       }	       {		    E T6E, T6F, T19, T1g;		    T6E = T4A + T4B;		    T6F = T4x + T4y;		    T6G = FNMS(KP923879532, T6F, KP382683432 * T6E);		    T74 = FMA(KP382683432, T6F, KP923879532 * T6E);		    T19 = T15 + T18;		    T1g = T1c + T1f;		    T1h = T19 - T1g;		    T2z = T1g + T19;	       }	       {		    E T2V, T2W, T4z, T4C;		    T2V = T15 - T18;		    T2W = Tp - Ts;		    T2X = T2V - T2W;		    T3o = T2W + T2V;		    T4z = T4x - T4y;		    T4C = T4A - T4B;		    T4D = FNMS(KP382683432, T4C, KP923879532 * T4z);		    T5A = FMA(KP382683432, T4z, KP923879532 * T4C);	       }	       {		    E T4G, T4J, T2Y, T2Z;		    T4G = T4E + T4F;		    T4J = T4H - T4I;		    T4K = FMA(KP923879532, T4G, KP382683432 * T4J);		    T5z = FNMS(KP382683432, T4G, KP923879532 * T4J);		    T2Y = Ti - Tl;		    T2Z = T1c - T1f;		    T30 = T2Y + T2Z;		    T3n = T2Y - T2Z;	       }	  }	  {	       E Ty, T4N, T1m, T4Z, TB, T4Y, T1p, T4O, TI, T52, T1w, T4V, TF, T51, T1t;	       E T4S;	       {		    E Tw, Tx, T1n, T1o;		    Tw = Rp[WS(rs, 1)];		    Tx = Rm[WS(rs, 14)];		    Ty = Tw + Tx;		    T4N = Tw - Tx;		    {			 E T1k, T1l, Tz, TA;			 T1k = Ip[WS(rs, 1)];			 T1l = Im[WS(rs, 14)];			 T1m = T1k - T1l;			 T4Z = T1k + T1l;			 Tz = Rp[WS(rs, 9)];			 TA = Rm[WS(rs, 6)];			 TB = Tz + TA;			 T4Y = Tz - TA;		    }		    T1n = Ip[WS(rs, 9)];		    T1o = Im[WS(rs, 6)];		    T1p = T1n - T1o;		    T4O = T1n + T1o;		    {			 E TG, TH, T4T, T1u, T1v, T4U;			 TG = Rm[WS(rs, 2)];			 TH = Rp[WS(rs, 13)];			 T4T = TG - TH;			 T1u = Ip[WS(rs, 13)];			 T1v = Im[WS(rs, 2)];			 T4U = T1u + T1v;			 TI = TG + TH;			 T52 = T4T + T4U;			 T1w = T1u - T1v;			 T4V = T4T - T4U;		    }		    {			 E TD, TE, T4Q, T1r, T1s, T4R;			 TD = Rp[WS(rs, 5)];			 TE = Rm[WS(rs, 10)];			 T4Q = TD - TE;			 T1r = Ip[WS(rs, 5)];			 T1s = Im[WS(rs, 10)];			 T4R = T1r + T1s;			 TF = TD + TE;			 T51 = T4Q + T4R;			 T1t = T1r - T1s;			 T4S = T4Q - T4R;		    }	       }	       {		    E TC, TJ, T6Q, T6R;		    TC = Ty + TB;		    TJ = TF + TI;		    TK = TC + TJ;		    T1j = TC - TJ;		    T6Q = T4Z - T4Y;		    T6R = KP707106781 * (T4S - T4V);		    T6S = T6Q + T6R;		    T7w = T6Q - T6R;	       }	       {		    E T6T, T6U, T1q, T1x;		    T6T = T4N + T4O;		    T6U = KP707106781 * (T51 + T52);		    T6V = T6T - T6U;		    T7v = T6T + T6U;		    T1q = T1m + T1p;		    T1x = T1t + T1w;		    T1y = T1q - T1x;		    T2B = T1q + T1x;	       }	       {		    E T3a, T3b, T4P, T4W;		    T3a = T1m - T1p;		    T3b = TF - TI;		    T3c = T3a - T3b;		    T3S = T3b + T3a;		    T4P = T4N - T4O;		    T4W = KP707106781 * (T4S + T4V);		    T4X = T4P - T4W;		    T61 = T4P + T4W;	       }	       {		    E T50, T53, T3d, T3e;		    T50 = T4Y + T4Z;		    T53 = KP707106781 * (T51 - T52);		    T54 = T50 - T53;		    T62 = T50 + T53;		    T3d = Ty - TB;		    T3e = T1w - T1t;		    T3f = T3d - T3e;		    T3T = T3d + T3e;	       }	  }	  {	       E TN, T56, T1D, T5i, TQ, T5h, T1G, T57, TX, T5l, T1N, T5e, TU, T5k, T1K;	       E T5b;	       {		    E TL, TM, T1E, T1F;		    TL = Rm[0];		    TM = Rp[WS(rs, 15)];		    TN = TL + TM;		    T56 = TL - TM;		    {			 E T1B, T1C, TO, TP;			 T1B = Ip[WS(rs, 15)];			 T1C = Im[0];			 T1D = T1B - T1C;			 T5i = T1B + T1C;			 TO = Rp[WS(rs, 7)];			 TP = Rm[WS(rs, 8)];			 TQ = TO + TP;			 T5h = TO - TP;		    }		    T1E = Ip[WS(rs, 7)];		    T1F = Im[WS(rs, 8)];		    T1G = T1E - T1F;		    T57 = T1E + T1F;		    {			 E TV, TW, T5c, T1L, T1M, T5d;			 TV = Rm[WS(rs, 4)];			 TW = Rp[WS(rs, 11)];			 T5c = TV - TW;			 T1L = Ip[WS(rs, 11)];			 T1M = Im[WS(rs, 4)];			 T5d = T1L + T1M;			 TX = TV + TW;			 T5l = T5c + T5d;			 T1N = T1L - T1M;			 T5e = T5c - T5d;		    }		    {			 E TS, TT, T59, T1I, T1J, T5a;			 TS = Rp[WS(rs, 3)];			 TT = Rm[WS(rs, 12)];			 T59 = TS - TT;			 T1I = Ip[WS(rs, 3)];			 T1J = Im[WS(rs, 12)];			 T5a = T1I + T1J;			 TU = TS + TT;			 T5k = T59 + T5a;			 T1K = T1I - T1J;			 T5b = T59 - T5a;		    }	       }	       {		    E TR, TY, T6J, T6K;		    TR = TN + TQ;		    TY = TU + TX;		    TZ = TR + TY;		    T1A = TR - TY;		    T6J = KP707106781 * (T5b - T5e);		    T6K = T5h + T5i;		    T6L = T6J - T6K;		    T7z = T6K + T6J;	       }	       {		    E T6M, T6N, T1H, T1O;		    T6M = T56 + T57;		    T6N = KP707106781 * (T5k + T5l);		    T6O = T6M - T6N;		    T7y = T6M + T6N;		    T1H = T1D + T1G;		    T1O = T1K + T1N;		    T1P = T1H - T1O;		    T2C = T1H + T1O;	       }	       {		    E T33, T34, T58, T5f;		    T33 = T1D - T1G;		    T34 = TU - TX;		    T35 = T33 - T34;		    T3P = T34 + T33;		    T58 = T56 - T57;		    T5f = KP707106781 * (T5b + T5e);		    T5g = T58 - T5f;		    T64 = T58 + T5f;	       }	       {		    E T5j, T5m, T36, T37;		    T5j = T5h - T5i;		    T5m = KP707106781 * (T5k - T5l);		    T5n = T5j - T5m;		    T65 = T5j + T5m;		    T36 = TN - TQ;		    T37 = T1N - T1K;		    T38 = T36 - T37;		    T3Q = T36 + T37;	       }	  }	  {	       E Tv, T10, T2w, T2A, T2D, T2E, T2v, T2x;	       Tv = Tf + Tu;	       T10 = TK + TZ;	       T2w = Tv - T10;	       T2A = T2y + T2z;	       T2D = T2B + T2C;	       T2E = T2A - T2D;	       Rp[0] = Tv + T10;	       Rm[0] = T2A + T2D;	       T2v = W[30];	       T2x = W[31];	       Rp[WS(rs, 8)] = FNMS(T2x, T2E, T2v * T2w);	       Rm[WS(rs, 8)] = FMA(T2x, T2w, T2v * T2E);	  }	  {	       E T2I, T2O, T2M, T2Q;	       {		    E T2G, T2H, T2K, T2L;		    T2G = Tf - Tu;		    T2H = T2C - T2B;		    T2I = T2G - T2H;		    T2O = T2G + T2H;		    T2K = T2y - T2z;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -