⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cb_8.c

📁 快速fft变换
💻 C
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:10:37 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2c -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include hc2cb.h *//* * This function contains 66 FP additions, 36 FP multiplications, * (or, 44 additions, 14 multiplications, 22 fused multiply/add), * 52 stack variables, 1 constants, and 32 memory accesses */#include "hc2cb.h"static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT m;     for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(rs)) {	  E Tw, TH, Tf, Ty, Tx, TI;	  {	       E TV, TD, T1i, T7, T1b, T1n, TQ, Tk, Tp, TE, Te, T1o, T1e, T1j, Tu;	       E TF;	       {		    E T4, Tg, T3, T19, TC, T5, Th, Ti;		    {			 E T1, T2, TA, TB;			 T1 = Rp[0];			 T2 = Rm[WS(rs, 3)];			 TA = Ip[0];			 TB = Im[WS(rs, 3)];			 T4 = Rp[WS(rs, 2)];			 Tg = T1 - T2;			 T3 = T1 + T2;			 T19 = TA - TB;			 TC = TA + TB;			 T5 = Rm[WS(rs, 1)];			 Th = Ip[WS(rs, 2)];			 Ti = Im[WS(rs, 1)];		    }		    {			 E Tb, Tl, Ta, T1c, To, Tc, Tr, Ts;			 {			      E T8, T9, Tm, Tn;			      T8 = Rp[WS(rs, 1)];			      {				   E Tz, T6, T1a, Tj;				   Tz = T4 - T5;				   T6 = T4 + T5;				   T1a = Th - Ti;				   Tj = Th + Ti;				   TV = TC - Tz;				   TD = Tz + TC;				   T1i = T3 - T6;				   T7 = T3 + T6;				   T1b = T19 + T1a;				   T1n = T19 - T1a;				   TQ = Tg + Tj;				   Tk = Tg - Tj;				   T9 = Rm[WS(rs, 2)];			      }			      Tm = Ip[WS(rs, 1)];			      Tn = Im[WS(rs, 2)];			      Tb = Rm[0];			      Tl = T8 - T9;			      Ta = T8 + T9;			      T1c = Tm - Tn;			      To = Tm + Tn;			      Tc = Rp[WS(rs, 3)];			      Tr = Ip[WS(rs, 3)];			      Ts = Im[0];			 }			 {			      E Tq, Td, T1d, Tt;			      Tp = Tl - To;			      TE = Tl + To;			      Tq = Tb - Tc;			      Td = Tb + Tc;			      T1d = Tr - Ts;			      Tt = Tr + Ts;			      Te = Ta + Td;			      T1o = Ta - Td;			      T1e = T1c + T1d;			      T1j = T1d - T1c;			      Tu = Tq - Tt;			      TF = Tq + Tt;			 }		    }	       }	       {		    E TG, Tv, T10, T13, T1s, T1k, T1p, T1v, T1u, T1w, T1t, TR, TW;		    Rp[0] = T7 + Te;		    Rm[0] = T1b + T1e;		    TG = TE - TF;		    TR = TE + TF;		    TW = Tp - Tu;		    Tv = Tp + Tu;		    {			 E TP, TS, TX, TU, T1r, TT, TY;			 TP = W[4];			 T10 = FMA(KP707106781, TR, TQ);			 TS = FNMS(KP707106781, TR, TQ);			 TX = FMA(KP707106781, TW, TV);			 T13 = FNMS(KP707106781, TW, TV);			 TU = W[5];			 T1s = T1i + T1j;			 T1k = T1i - T1j;			 TT = TP * TS;			 TY = TP * TX;			 T1p = T1n - T1o;			 T1v = T1o + T1n;			 T1r = W[2];			 Ip[WS(rs, 1)] = FNMS(TU, TX, TT);			 Im[WS(rs, 1)] = FMA(TU, TS, TY);			 T1u = W[3];			 T1w = T1r * T1v;			 T1t = T1r * T1s;		    }		    {			 E T1f, T15, T18, T17, T1g, T1h, T1m;			 {			      E TZ, T12, T16, T14, T11;			      Rm[WS(rs, 1)] = FMA(T1u, T1s, T1w);			      Rp[WS(rs, 1)] = FNMS(T1u, T1v, T1t);			      TZ = W[12];			      T12 = W[13];			      T1f = T1b - T1e;			      T16 = T7 - Te;			      T14 = TZ * T13;			      T11 = TZ * T10;			      T15 = W[6];			      T18 = W[7];			      Im[WS(rs, 3)] = FMA(T12, T10, T14);			      Ip[WS(rs, 3)] = FNMS(T12, T13, T11);			      T17 = T15 * T16;			      T1g = T18 * T16;			 }			 Rp[WS(rs, 2)] = FNMS(T18, T1f, T17);			 Rm[WS(rs, 2)] = FMA(T15, T1f, T1g);			 T1h = W[10];			 T1m = W[11];			 {			      E TN, TJ, TM, TL, TO, TK, T1q, T1l;			      Tw = FNMS(KP707106781, Tv, Tk);			      TK = FMA(KP707106781, Tv, Tk);			      T1q = T1h * T1p;			      T1l = T1h * T1k;			      TN = FMA(KP707106781, TG, TD);			      TH = FNMS(KP707106781, TG, TD);			      Rm[WS(rs, 3)] = FMA(T1m, T1k, T1q);			      Rp[WS(rs, 3)] = FNMS(T1m, T1p, T1l);			      TJ = W[0];			      TM = W[1];			      Tf = W[8];			      TL = TJ * TK;			      TO = TM * TK;			      Ty = W[9];			      Tx = Tf * Tw;			      Ip[0] = FNMS(TM, TN, TL);			      Im[0] = FMA(TJ, TN, TO);			 }		    }	       }	  }	  Ip[WS(rs, 2)] = FNMS(Ty, TH, Tx);	  TI = Ty * Tw;	  Im[WS(rs, 2)] = FMA(Tf, TH, TI);     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 8},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {44, 14, 22, 0} };void X(codelet_hc2cb_8) (planner *p) {     X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2c -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hc2cb_8 -include hc2cb.h *//* * This function contains 66 FP additions, 32 FP multiplications, * (or, 52 additions, 18 multiplications, 14 fused multiply/add), * 30 stack variables, 1 constants, and 32 memory accesses */#include "hc2cb.h"static void hc2cb_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT m;     for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(rs)) {	  E T7, T18, T1c, To, Ty, TM, TY, TC, Te, TZ, T10, Tv, Tz, TP, TS;	  E TD;	  {	       E T3, TK, Tk, TX, T6, TW, Tn, TL;	       {		    E T1, T2, Ti, Tj;		    T1 = Rp[0];		    T2 = Rm[WS(rs, 3)];		    T3 = T1 + T2;		    TK = T1 - T2;		    Ti = Ip[0];		    Tj = Im[WS(rs, 3)];		    Tk = Ti - Tj;		    TX = Ti + Tj;	       }	       {		    E T4, T5, Tl, Tm;		    T4 = Rp[WS(rs, 2)];		    T5 = Rm[WS(rs, 1)];		    T6 = T4 + T5;		    TW = T4 - T5;		    Tl = Ip[WS(rs, 2)];		    Tm = Im[WS(rs, 1)];		    Tn = Tl - Tm;		    TL = Tl + Tm;	       }	       T7 = T3 + T6;	       T18 = TK + TL;	       T1c = TX - TW;	       To = Tk + Tn;	       Ty = T3 - T6;	       TM = TK - TL;	       TY = TW + TX;	       TC = Tk - Tn;	  }	  {	       E Ta, TN, Tr, TO, Td, TQ, Tu, TR;	       {		    E T8, T9, Tp, Tq;		    T8 = Rp[WS(rs, 1)];		    T9 = Rm[WS(rs, 2)];		    Ta = T8 + T9;		    TN = T8 - T9;		    Tp = Ip[WS(rs, 1)];		    Tq = Im[WS(rs, 2)];		    Tr = Tp - Tq;		    TO = Tp + Tq;	       }	       {		    E Tb, Tc, Ts, Tt;		    Tb = Rm[0];		    Tc = Rp[WS(rs, 3)];		    Td = Tb + Tc;		    TQ = Tb - Tc;		    Ts = Ip[WS(rs, 3)];		    Tt = Im[0];		    Tu = Ts - Tt;		    TR = Ts + Tt;	       }	       Te = Ta + Td;	       TZ = TN + TO;	       T10 = TQ + TR;	       Tv = Tr + Tu;	       Tz = Tu - Tr;	       TP = TN - TO;	       TS = TQ - TR;	       TD = Ta - Td;	  }	  Rp[0] = T7 + Te;	  Rm[0] = To + Tv;	  {	       E Tg, Tw, Tf, Th;	       Tg = T7 - Te;	       Tw = To - Tv;	       Tf = W[6];	       Th = W[7];	       Rp[WS(rs, 2)] = FNMS(Th, Tw, Tf * Tg);	       Rm[WS(rs, 2)] = FMA(Th, Tg, Tf * Tw);	  }	  {	       E TG, TI, TF, TH;	       TG = Ty + Tz;	       TI = TD + TC;	       TF = W[2];	       TH = W[3];	       Rp[WS(rs, 1)] = FNMS(TH, TI, TF * TG);	       Rm[WS(rs, 1)] = FMA(TF, TI, TH * TG);	  }	  {	       E TA, TE, Tx, TB;	       TA = Ty - Tz;	       TE = TC - TD;	       Tx = W[10];	       TB = W[11];	       Rp[WS(rs, 3)] = FNMS(TB, TE, Tx * TA);	       Rm[WS(rs, 3)] = FMA(Tx, TE, TB * TA);	  }	  {	       E T1a, T1g, T1e, T1i, T19, T1d;	       T19 = KP707106781 * (TZ + T10);	       T1a = T18 - T19;	       T1g = T18 + T19;	       T1d = KP707106781 * (TP - TS);	       T1e = T1c + T1d;	       T1i = T1c - T1d;	       {		    E T17, T1b, T1f, T1h;		    T17 = W[4];		    T1b = W[5];		    Ip[WS(rs, 1)] = FNMS(T1b, T1e, T17 * T1a);		    Im[WS(rs, 1)] = FMA(T17, T1e, T1b * T1a);		    T1f = W[12];		    T1h = W[13];		    Ip[WS(rs, 3)] = FNMS(T1h, T1i, T1f * T1g);		    Im[WS(rs, 3)] = FMA(T1f, T1i, T1h * T1g);	       }	  }	  {	       E TU, T14, T12, T16, TT, T11;	       TT = KP707106781 * (TP + TS);	       TU = TM - TT;	       T14 = TM + TT;	       T11 = KP707106781 * (TZ - T10);	       T12 = TY - T11;	       T16 = TY + T11;	       {		    E TJ, TV, T13, T15;		    TJ = W[8];		    TV = W[9];		    Ip[WS(rs, 2)] = FNMS(TV, T12, TJ * TU);		    Im[WS(rs, 2)] = FMA(TV, TU, TJ * T12);		    T13 = W[0];		    T15 = W[1];		    Ip[0] = FNMS(T15, T16, T13 * T14);		    Im[0] = FMA(T15, T14, T13 * T16);	       }	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 8},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 8, "hc2cb_8", twinstr, &GENUS, {52, 18, 14, 0} };void X(codelet_hc2cb_8) (planner *p) {     X(khc2c_register) (p, hc2cb_8, &desc, HC2C_VIA_RDFT);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -