⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cbdft_12.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
static const tw_instr twinstr[] = {     {TW_FULL, 1, 12},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {96, 22, 46, 0} };void X(codelet_hc2cbdft_12) (planner *p) {     X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include hc2cb.h *//* * This function contains 142 FP additions, 60 FP multiplications, * (or, 112 additions, 30 multiplications, 30 fused multiply/add), * 47 stack variables, 2 constants, and 48 memory accesses */#include "hc2cb.h"static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     DK(KP866025403, +0.866025403784438646763723170752936183471402627);     INT m;     for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(rs)) {	  E Tv, T1E, TC, T1F, TW, T1x, TT, T1w, T1d, T1N, Tb, T1R, TI, T1z, TN;	  E T1A, T17, T1I, T12, T1H, T1g, T1S, Tm, T1O;	  {	       E T1, Tq, T6, TA, T4, Tp, Tt, TS, T9, Tw, Tz, TV;	       T1 = Rp[0];	       Tq = Ip[0];	       T6 = Rm[WS(rs, 5)];	       TA = Im[WS(rs, 5)];	       {		    E T2, T3, Tr, Ts;		    T2 = Rp[WS(rs, 4)];		    T3 = Rm[WS(rs, 3)];		    T4 = T2 + T3;		    Tp = KP866025403 * (T2 - T3);		    Tr = Im[WS(rs, 3)];		    Ts = Ip[WS(rs, 4)];		    Tt = Tr - Ts;		    TS = KP866025403 * (Tr + Ts);	       }	       {		    E T7, T8, Tx, Ty;		    T7 = Rm[WS(rs, 1)];		    T8 = Rp[WS(rs, 2)];		    T9 = T7 + T8;		    Tw = KP866025403 * (T7 - T8);		    Tx = Im[WS(rs, 1)];		    Ty = Ip[WS(rs, 2)];		    Tz = Tx - Ty;		    TV = KP866025403 * (Tx + Ty);	       }	       {		    E Tu, TB, TU, TR;		    Tu = FMA(KP500000000, Tt, Tq);		    Tv = Tp + Tu;		    T1E = Tu - Tp;		    TB = FMS(KP500000000, Tz, TA);		    TC = Tw + TB;		    T1F = TB - Tw;		    TU = FNMS(KP500000000, T9, T6);		    TW = TU + TV;		    T1x = TU - TV;		    TR = FNMS(KP500000000, T4, T1);		    TT = TR - TS;		    T1w = TR + TS;		    {			 E T1b, T1c, T5, Ta;			 T1b = Tq - Tt;			 T1c = Tz + TA;			 T1d = T1b - T1c;			 T1N = T1b + T1c;			 T5 = T1 + T4;			 Ta = T6 + T9;			 Tb = T5 + Ta;			 T1R = T5 - Ta;		    }	       }	  }	  {	       E Tc, T10, Th, T15, Tf, TY, TH, TZ, Tk, T13, TM, T14;	       Tc = Rp[WS(rs, 3)];	       T10 = Ip[WS(rs, 3)];	       Th = Rm[WS(rs, 2)];	       T15 = Im[WS(rs, 2)];	       {		    E Td, Te, TF, TG;		    Td = Rm[WS(rs, 4)];		    Te = Rm[0];		    Tf = Td + Te;		    TY = KP866025403 * (Td - Te);		    TF = Im[WS(rs, 4)];		    TG = Im[0];		    TH = KP866025403 * (TF - TG);		    TZ = TF + TG;	       }	       {		    E Ti, Tj, TK, TL;		    Ti = Rp[WS(rs, 1)];		    Tj = Rp[WS(rs, 5)];		    Tk = Ti + Tj;		    T13 = KP866025403 * (Ti - Tj);		    TK = Ip[WS(rs, 5)];		    TL = Ip[WS(rs, 1)];		    TM = KP866025403 * (TK - TL);		    T14 = TK + TL;	       }	       {		    E TE, TJ, T16, T11;		    TE = FNMS(KP500000000, Tf, Tc);		    TI = TE + TH;		    T1z = TE - TH;		    TJ = FNMS(KP500000000, Tk, Th);		    TN = TJ + TM;		    T1A = TJ - TM;		    T16 = FMA(KP500000000, T14, T15);		    T17 = T13 - T16;		    T1I = T13 + T16;		    T11 = FMA(KP500000000, TZ, T10);		    T12 = TY + T11;		    T1H = T11 - TY;		    {			 E T1e, T1f, Tg, Tl;			 T1e = T10 - TZ;			 T1f = T14 - T15;			 T1g = T1e + T1f;			 T1S = T1e - T1f;			 Tg = Tc + Tf;			 Tl = Th + Tk;			 Tm = Tg + Tl;			 T1O = Tg - Tl;		    }	       }	  }	  {	       E Tn, T1h, TP, T1p, T19, T1r, T1n, T1t;	       Tn = Tb + Tm;	       T1h = T1d + T1g;	       {		    E TD, TO, TX, T18;		    TD = Tv - TC;		    TO = TI - TN;		    TP = TD + TO;		    T1p = TD - TO;		    TX = TT - TW;		    T18 = T12 - T17;		    T19 = TX - T18;		    T1r = TX + T18;		    {			 E T1k, T1m, T1j, T1l;			 T1k = Tb - Tm;			 T1m = T1d - T1g;			 T1j = W[10];			 T1l = W[11];			 T1n = FNMS(T1l, T1m, T1j * T1k);			 T1t = FMA(T1l, T1k, T1j * T1m);		    }	       }	       {		    E T1a, T1i, To, TQ;		    To = W[0];		    TQ = W[1];		    T1a = FMA(To, TP, TQ * T19);		    T1i = FNMS(TQ, TP, To * T19);		    Rp[0] = Tn - T1a;		    Ip[0] = T1h + T1i;		    Rm[0] = Tn + T1a;		    Im[0] = T1i - T1h;	       }	       {		    E T1s, T1u, T1o, T1q;		    T1o = W[12];		    T1q = W[13];		    T1s = FMA(T1o, T1p, T1q * T1r);		    T1u = FNMS(T1q, T1p, T1o * T1r);		    Rp[WS(rs, 3)] = T1n - T1s;		    Ip[WS(rs, 3)] = T1t + T1u;		    Rm[WS(rs, 3)] = T1n + T1s;		    Im[WS(rs, 3)] = T1u - T1t;	       }	  }	  {	       E T1C, T1Y, T1K, T20, T1U, T1V, T26, T27;	       {		    E T1y, T1B, T1G, T1J;		    T1y = T1w + T1x;		    T1B = T1z + T1A;		    T1C = T1y - T1B;		    T1Y = T1y + T1B;		    T1G = T1E + T1F;		    T1J = T1H - T1I;		    T1K = T1G - T1J;		    T20 = T1G + T1J;	       }	       {		    E T1P, T1T, T1M, T1Q;		    T1P = T1N - T1O;		    T1T = T1R + T1S;		    T1M = W[4];		    T1Q = W[5];		    T1U = FMA(T1M, T1P, T1Q * T1T);		    T1V = FNMS(T1Q, T1P, T1M * T1T);	       }	       {		    E T23, T25, T22, T24;		    T23 = T1O + T1N;		    T25 = T1R - T1S;		    T22 = W[16];		    T24 = W[17];		    T26 = FMA(T22, T23, T24 * T25);		    T27 = FNMS(T24, T23, T22 * T25);	       }	       {		    E T1L, T1W, T1v, T1D;		    T1v = W[2];		    T1D = W[3];		    T1L = FNMS(T1D, T1K, T1v * T1C);		    T1W = FMA(T1D, T1C, T1v * T1K);		    Rp[WS(rs, 1)] = T1L - T1U;		    Ip[WS(rs, 1)] = T1V + T1W;		    Rm[WS(rs, 1)] = T1U + T1L;		    Im[WS(rs, 1)] = T1V - T1W;	       }	       {		    E T21, T28, T1X, T1Z;		    T1X = W[14];		    T1Z = W[15];		    T21 = FNMS(T1Z, T20, T1X * T1Y);		    T28 = FMA(T1Z, T1Y, T1X * T20);		    Rp[WS(rs, 4)] = T21 - T26;		    Ip[WS(rs, 4)] = T27 + T28;		    Rm[WS(rs, 4)] = T26 + T21;		    Im[WS(rs, 4)] = T27 - T28;	       }	  }	  {	       E T2c, T2u, T2p, T2B, T2g, T2w, T2l, T2z;	       {		    E T2a, T2b, T2n, T2o;		    T2a = TT + TW;		    T2b = TI + TN;		    T2c = T2a + T2b;		    T2u = T2a - T2b;		    T2n = T1w - T1x;		    T2o = T1H + T1I;		    T2p = T2n - T2o;		    T2B = T2n + T2o;	       }	       {		    E T2e, T2f, T2j, T2k;		    T2e = Tv + TC;		    T2f = T12 + T17;		    T2g = T2e + T2f;		    T2w = T2e - T2f;		    T2j = T1E - T1F;		    T2k = T1z - T1A;		    T2l = T2j + T2k;		    T2z = T2j - T2k;	       }	       {		    E T2h, T2r, T2q, T2s;		    {			 E T29, T2d, T2i, T2m;			 T29 = W[6];			 T2d = W[7];			 T2h = FNMS(T2d, T2g, T29 * T2c);			 T2r = FMA(T2d, T2c, T29 * T2g);			 T2i = W[8];			 T2m = W[9];			 T2q = FMA(T2i, T2l, T2m * T2p);			 T2s = FNMS(T2m, T2l, T2i * T2p);		    }		    Rp[WS(rs, 2)] = T2h - T2q;		    Ip[WS(rs, 2)] = T2r + T2s;		    Rm[WS(rs, 2)] = T2h + T2q;		    Im[WS(rs, 2)] = T2s - T2r;	       }	       {		    E T2x, T2D, T2C, T2E;		    {			 E T2t, T2v, T2y, T2A;			 T2t = W[18];			 T2v = W[19];			 T2x = FNMS(T2v, T2w, T2t * T2u);			 T2D = FMA(T2v, T2u, T2t * T2w);			 T2y = W[20];			 T2A = W[21];			 T2C = FMA(T2y, T2z, T2A * T2B);			 T2E = FNMS(T2A, T2z, T2y * T2B);		    }		    Rp[WS(rs, 5)] = T2x - T2C;		    Ip[WS(rs, 5)] = T2D + T2E;		    Rm[WS(rs, 5)] = T2x + T2C;		    Im[WS(rs, 5)] = T2E - T2D;	       }	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 12},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 12, "hc2cbdft_12", twinstr, &GENUS, {112, 30, 30, 0} };void X(codelet_hc2cbdft_12) (planner *p) {     X(khc2c_register) (p, hc2cbdft_12, &desc, HC2C_VIA_DFT);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -