📄 hc2cbdft_12.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:11:52 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include hc2cb.h *//* * This function contains 142 FP additions, 68 FP multiplications, * (or, 96 additions, 22 multiplications, 46 fused multiply/add), * 81 stack variables, 2 constants, and 48 memory accesses */#include "hc2cb.h"static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP866025403, +0.866025403784438646763723170752936183471402627); DK(KP500000000, +0.500000000000000000000000000000000000000000000); INT m; for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(rs)) { E T2S, T2V, T2w, T2Z, T2T, T2I, T2Q, T2Y, T2U, T2K, T2G, T30, T2W; { E Tb, T1Z, T2D, T1E, T1N, T2y, TD, T2t, T1U, T1e, T2o, TY, T1f, TI, T1g; E TN, Tm, T1V, T2z, T1H, T1Q, T2E, T19, T2u; { E T1c, TU, T1d, TX; { E Tu, T6, TT, TS, T5, Tt, Tw, Tx, TB, T9, Ty; { E T1, Tp, Tq, Tr, T4, T2, T3, T7, T8, Ts; T1 = Rp[0]; T2 = Rp[WS(rs, 4)]; T3 = Rm[WS(rs, 3)]; Tp = Ip[0]; Tq = Ip[WS(rs, 4)]; Tr = Im[WS(rs, 3)]; T4 = T2 + T3; Tu = T2 - T3; T6 = Rm[WS(rs, 5)]; TT = Tr + Tq; Ts = Tq - Tr; TS = FNMS(KP500000000, T4, T1); T5 = T1 + T4; T7 = Rm[WS(rs, 1)]; T8 = Rp[WS(rs, 2)]; T1c = Tp + Ts; Tt = FNMS(KP500000000, Ts, Tp); Tw = Im[WS(rs, 5)]; Tx = Im[WS(rs, 1)]; TB = T7 - T8; T9 = T7 + T8; Ty = Ip[WS(rs, 2)]; } { E T1L, Tv, Ta, TV, TW, Tz; T1L = FNMS(KP866025403, Tu, Tt); Tv = FMA(KP866025403, Tu, Tt); Ta = T6 + T9; TV = FNMS(KP500000000, T9, T6); TW = Tx + Ty; Tz = Tx - Ty; { E TC, T1M, T1C, TA, T1D; T1C = FMA(KP866025403, TT, TS); TU = FNMS(KP866025403, TT, TS); T1d = Tw + Tz; TA = FNMS(KP500000000, Tz, Tw); T1D = FNMS(KP866025403, TW, TV); TX = FMA(KP866025403, TW, TV); Tb = T5 + Ta; T1Z = T5 - Ta; TC = FNMS(KP866025403, TB, TA); T1M = FMA(KP866025403, TB, TA); T2D = T1C - T1D; T1E = T1C + T1D; T1N = T1L - T1M; T2y = T1L + T1M; TD = Tv + TC; T2t = Tv - TC; } } } { E T12, Th, TH, TE, Tg, T11, T14, TK, T17, Tk, TL; { E Tc, TZ, TF, TG, Tf, Td, Te, Ti, Tj, T10; Tc = Rp[WS(rs, 3)]; T1U = T1c + T1d; T1e = T1c - T1d; T2o = TU + TX; TY = TU - TX; Td = Rm[WS(rs, 4)]; Te = Rm[0]; TZ = Ip[WS(rs, 3)]; TF = Im[WS(rs, 4)]; TG = Im[0]; Tf = Td + Te; T12 = Td - Te; Th = Rm[WS(rs, 2)]; TH = TF - TG; T10 = TF + TG; TE = FNMS(KP500000000, Tf, Tc); Tg = Tc + Tf; Ti = Rp[WS(rs, 1)]; Tj = Rp[WS(rs, 5)]; T1f = TZ - T10; T11 = FMA(KP500000000, T10, TZ); T14 = Im[WS(rs, 2)]; TK = Ip[WS(rs, 5)]; T17 = Ti - Tj; Tk = Ti + Tj; TL = Ip[WS(rs, 1)]; } { E T1O, T13, Tl, TJ, TM, T15; T1O = FNMS(KP866025403, T12, T11); T13 = FMA(KP866025403, T12, T11); Tl = Th + Tk; TJ = FNMS(KP500000000, Tk, Th); TM = TK - TL; T15 = TK + TL; { E T18, T1P, T1F, T16, T1G; T1F = FNMS(KP866025403, TH, TE); TI = FMA(KP866025403, TH, TE); T1g = T15 - T14; T16 = FMA(KP500000000, T15, T14); T1G = FNMS(KP866025403, TM, TJ); TN = FMA(KP866025403, TM, TJ); Tm = Tg + Tl; T1V = Tg - Tl; T18 = FNMS(KP866025403, T17, T16); T1P = FMA(KP866025403, T17, T16); T2z = T1F - T1G; T1H = T1F + T1G; T1Q = T1O - T1P; T2E = T1O + T1P; T19 = T13 + T18; T2u = T13 - T18; } } } } { E T20, T2p, T1v, T1s, T1q, T1y, T1u, T1z, T1t; { E T1m, Tn, T1a, T1p, T1i, To, TP, TR, T1h, TO; T1m = Tb - Tm; Tn = Tb + Tm; T20 = T1f - T1g; T1h = T1f + T1g; T2p = TI + TN; TO = TI - TN; T1a = TY - T19; T1v = TY + T19; T1p = T1e - T1h; T1i = T1e + T1h; To = W[0]; T1s = TD - TO; TP = TD + TO; TR = W[1]; { E T1l, T1o, T1n, T1x, T1r; { E T1j, TQ, T1k, T1b; T1j = To * T1a; TQ = To * TP; T1l = W[10]; T1k = FNMS(TR, TP, T1j); T1b = FMA(TR, T1a, TQ); T1o = W[11]; T1n = T1l * T1m; Im[0] = T1k - T1i; Ip[0] = T1i + T1k; Rm[0] = Tn + T1b; Rp[0] = Tn - T1b; T1x = T1o * T1m; T1r = W[12]; } T1q = FNMS(T1o, T1p, T1n); T1y = FMA(T1l, T1p, T1x); T1u = W[13]; T1z = T1r * T1v; T1t = T1r * T1s; } } { E T2e, T2h, T1S, T2j, T2f, T26, T2c, T2m, T2g, T24, T22; { E T2b, T1R, T27, T2a, T1B, T29, T2l, T1K, T1J, T1W, T21, T25, T2d, T23, T1X; E T1Y; { E T1I, T28, T1A, T1w, T1T; T1A = FNMS(T1u, T1s, T1z); T1w = FMA(T1u, T1v, T1t); T1I = T1E - T1H; T28 = T1E + T1H; T2b = T1N + T1Q; T1R = T1N - T1Q; Im[WS(rs, 3)] = T1A - T1y; Ip[WS(rs, 3)] = T1y + T1A; Rm[WS(rs, 3)] = T1q + T1w; Rp[WS(rs, 3)] = T1q - T1w; T27 = W[14]; T2a = W[15]; T1B = W[2]; T29 = T27 * T28; T2l = T2a * T28; T1K = W[3]; T1J = T1B * T1I; T1W = T1U - T1V; T2e = T1V + T1U; T2h = T1Z - T20; T21 = T1Z + T20; T25 = T1K * T1I; T1T = W[4]; T2d = W[16]; T23 = T1T * T21; T1X = T1T * T1W; } T1S = FNMS(T1K, T1R, T1J); T2j = T2d * T2h; T2f = T2d * T2e; T26 = FMA(T1B, T1R, T25); T1Y = W[5]; T2c = FNMS(T2a, T2b, T29); T2m = FMA(T27, T2b, T2l); T2g = W[17]; T24 = FNMS(T1Y, T1W, T23); T22 = FMA(T1Y, T21, T1X); } { E T2L, T2O, T2P, T2v, T2N, T2X, T2n, T2s, T2A, T2F, T2r, T2H, T2R, T2J, T2B; E T2C; { E T2q, T2k, T2i, T2M, T2x; T2k = FNMS(T2g, T2e, T2j); T2i = FMA(T2g, T2h, T2f); Im[WS(rs, 1)] = T24 - T26; Ip[WS(rs, 1)] = T24 + T26; Rm[WS(rs, 1)] = T22 + T1S; Rp[WS(rs, 1)] = T1S - T22; Im[WS(rs, 4)] = T2k - T2m; Ip[WS(rs, 4)] = T2k + T2m; Rm[WS(rs, 4)] = T2i + T2c; Rp[WS(rs, 4)] = T2c - T2i; T2q = T2o + T2p; T2M = T2o - T2p; T2L = W[18]; T2O = W[19]; T2P = T2t - T2u; T2v = T2t + T2u; T2N = T2L * T2M; T2X = T2O * T2M; T2n = W[6]; T2s = W[7]; T2S = T2y - T2z; T2A = T2y + T2z; T2F = T2D - T2E; T2V = T2D + T2E; T2r = T2n * T2q; T2H = T2s * T2q; T2x = W[8]; T2R = W[20]; T2J = T2x * T2F; T2B = T2x * T2A; } T2w = FNMS(T2s, T2v, T2r); T2Z = T2R * T2V; T2T = T2R * T2S; T2I = FMA(T2n, T2v, T2H); T2C = W[9]; T2Q = FNMS(T2O, T2P, T2N); T2Y = FMA(T2L, T2P, T2X); T2U = W[21]; T2K = FNMS(T2C, T2A, T2J); T2G = FMA(T2C, T2F, T2B); } } } } T30 = FNMS(T2U, T2S, T2Z); T2W = FMA(T2U, T2V, T2T); Im[WS(rs, 2)] = T2K - T2I; Ip[WS(rs, 2)] = T2I + T2K; Rm[WS(rs, 2)] = T2w + T2G; Rp[WS(rs, 2)] = T2w - T2G; Im[WS(rs, 5)] = T30 - T2Y; Ip[WS(rs, 5)] = T2Y + T30; Rm[WS(rs, 5)] = T2Q + T2W; Rp[WS(rs, 5)] = T2Q - T2W; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -