⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cbdft_12.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:11:52 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -dif -name hc2cbdft_12 -include hc2cb.h *//* * This function contains 142 FP additions, 68 FP multiplications, * (or, 96 additions, 22 multiplications, 46 fused multiply/add), * 81 stack variables, 2 constants, and 48 memory accesses */#include "hc2cb.h"static void hc2cbdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP866025403, +0.866025403784438646763723170752936183471402627);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     INT m;     for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(rs)) {	  E T2S, T2V, T2w, T2Z, T2T, T2I, T2Q, T2Y, T2U, T2K, T2G, T30, T2W;	  {	       E Tb, T1Z, T2D, T1E, T1N, T2y, TD, T2t, T1U, T1e, T2o, TY, T1f, TI, T1g;	       E TN, Tm, T1V, T2z, T1H, T1Q, T2E, T19, T2u;	       {		    E T1c, TU, T1d, TX;		    {			 E Tu, T6, TT, TS, T5, Tt, Tw, Tx, TB, T9, Ty;			 {			      E T1, Tp, Tq, Tr, T4, T2, T3, T7, T8, Ts;			      T1 = Rp[0];			      T2 = Rp[WS(rs, 4)];			      T3 = Rm[WS(rs, 3)];			      Tp = Ip[0];			      Tq = Ip[WS(rs, 4)];			      Tr = Im[WS(rs, 3)];			      T4 = T2 + T3;			      Tu = T2 - T3;			      T6 = Rm[WS(rs, 5)];			      TT = Tr + Tq;			      Ts = Tq - Tr;			      TS = FNMS(KP500000000, T4, T1);			      T5 = T1 + T4;			      T7 = Rm[WS(rs, 1)];			      T8 = Rp[WS(rs, 2)];			      T1c = Tp + Ts;			      Tt = FNMS(KP500000000, Ts, Tp);			      Tw = Im[WS(rs, 5)];			      Tx = Im[WS(rs, 1)];			      TB = T7 - T8;			      T9 = T7 + T8;			      Ty = Ip[WS(rs, 2)];			 }			 {			      E T1L, Tv, Ta, TV, TW, Tz;			      T1L = FNMS(KP866025403, Tu, Tt);			      Tv = FMA(KP866025403, Tu, Tt);			      Ta = T6 + T9;			      TV = FNMS(KP500000000, T9, T6);			      TW = Tx + Ty;			      Tz = Tx - Ty;			      {				   E TC, T1M, T1C, TA, T1D;				   T1C = FMA(KP866025403, TT, TS);				   TU = FNMS(KP866025403, TT, TS);				   T1d = Tw + Tz;				   TA = FNMS(KP500000000, Tz, Tw);				   T1D = FNMS(KP866025403, TW, TV);				   TX = FMA(KP866025403, TW, TV);				   Tb = T5 + Ta;				   T1Z = T5 - Ta;				   TC = FNMS(KP866025403, TB, TA);				   T1M = FMA(KP866025403, TB, TA);				   T2D = T1C - T1D;				   T1E = T1C + T1D;				   T1N = T1L - T1M;				   T2y = T1L + T1M;				   TD = Tv + TC;				   T2t = Tv - TC;			      }			 }		    }		    {			 E T12, Th, TH, TE, Tg, T11, T14, TK, T17, Tk, TL;			 {			      E Tc, TZ, TF, TG, Tf, Td, Te, Ti, Tj, T10;			      Tc = Rp[WS(rs, 3)];			      T1U = T1c + T1d;			      T1e = T1c - T1d;			      T2o = TU + TX;			      TY = TU - TX;			      Td = Rm[WS(rs, 4)];			      Te = Rm[0];			      TZ = Ip[WS(rs, 3)];			      TF = Im[WS(rs, 4)];			      TG = Im[0];			      Tf = Td + Te;			      T12 = Td - Te;			      Th = Rm[WS(rs, 2)];			      TH = TF - TG;			      T10 = TF + TG;			      TE = FNMS(KP500000000, Tf, Tc);			      Tg = Tc + Tf;			      Ti = Rp[WS(rs, 1)];			      Tj = Rp[WS(rs, 5)];			      T1f = TZ - T10;			      T11 = FMA(KP500000000, T10, TZ);			      T14 = Im[WS(rs, 2)];			      TK = Ip[WS(rs, 5)];			      T17 = Ti - Tj;			      Tk = Ti + Tj;			      TL = Ip[WS(rs, 1)];			 }			 {			      E T1O, T13, Tl, TJ, TM, T15;			      T1O = FNMS(KP866025403, T12, T11);			      T13 = FMA(KP866025403, T12, T11);			      Tl = Th + Tk;			      TJ = FNMS(KP500000000, Tk, Th);			      TM = TK - TL;			      T15 = TK + TL;			      {				   E T18, T1P, T1F, T16, T1G;				   T1F = FNMS(KP866025403, TH, TE);				   TI = FMA(KP866025403, TH, TE);				   T1g = T15 - T14;				   T16 = FMA(KP500000000, T15, T14);				   T1G = FNMS(KP866025403, TM, TJ);				   TN = FMA(KP866025403, TM, TJ);				   Tm = Tg + Tl;				   T1V = Tg - Tl;				   T18 = FNMS(KP866025403, T17, T16);				   T1P = FMA(KP866025403, T17, T16);				   T2z = T1F - T1G;				   T1H = T1F + T1G;				   T1Q = T1O - T1P;				   T2E = T1O + T1P;				   T19 = T13 + T18;				   T2u = T13 - T18;			      }			 }		    }	       }	       {		    E T20, T2p, T1v, T1s, T1q, T1y, T1u, T1z, T1t;		    {			 E T1m, Tn, T1a, T1p, T1i, To, TP, TR, T1h, TO;			 T1m = Tb - Tm;			 Tn = Tb + Tm;			 T20 = T1f - T1g;			 T1h = T1f + T1g;			 T2p = TI + TN;			 TO = TI - TN;			 T1a = TY - T19;			 T1v = TY + T19;			 T1p = T1e - T1h;			 T1i = T1e + T1h;			 To = W[0];			 T1s = TD - TO;			 TP = TD + TO;			 TR = W[1];			 {			      E T1l, T1o, T1n, T1x, T1r;			      {				   E T1j, TQ, T1k, T1b;				   T1j = To * T1a;				   TQ = To * TP;				   T1l = W[10];				   T1k = FNMS(TR, TP, T1j);				   T1b = FMA(TR, T1a, TQ);				   T1o = W[11];				   T1n = T1l * T1m;				   Im[0] = T1k - T1i;				   Ip[0] = T1i + T1k;				   Rm[0] = Tn + T1b;				   Rp[0] = Tn - T1b;				   T1x = T1o * T1m;				   T1r = W[12];			      }			      T1q = FNMS(T1o, T1p, T1n);			      T1y = FMA(T1l, T1p, T1x);			      T1u = W[13];			      T1z = T1r * T1v;			      T1t = T1r * T1s;			 }		    }		    {			 E T2e, T2h, T1S, T2j, T2f, T26, T2c, T2m, T2g, T24, T22;			 {			      E T2b, T1R, T27, T2a, T1B, T29, T2l, T1K, T1J, T1W, T21, T25, T2d, T23, T1X;			      E T1Y;			      {				   E T1I, T28, T1A, T1w, T1T;				   T1A = FNMS(T1u, T1s, T1z);				   T1w = FMA(T1u, T1v, T1t);				   T1I = T1E - T1H;				   T28 = T1E + T1H;				   T2b = T1N + T1Q;				   T1R = T1N - T1Q;				   Im[WS(rs, 3)] = T1A - T1y;				   Ip[WS(rs, 3)] = T1y + T1A;				   Rm[WS(rs, 3)] = T1q + T1w;				   Rp[WS(rs, 3)] = T1q - T1w;				   T27 = W[14];				   T2a = W[15];				   T1B = W[2];				   T29 = T27 * T28;				   T2l = T2a * T28;				   T1K = W[3];				   T1J = T1B * T1I;				   T1W = T1U - T1V;				   T2e = T1V + T1U;				   T2h = T1Z - T20;				   T21 = T1Z + T20;				   T25 = T1K * T1I;				   T1T = W[4];				   T2d = W[16];				   T23 = T1T * T21;				   T1X = T1T * T1W;			      }			      T1S = FNMS(T1K, T1R, T1J);			      T2j = T2d * T2h;			      T2f = T2d * T2e;			      T26 = FMA(T1B, T1R, T25);			      T1Y = W[5];			      T2c = FNMS(T2a, T2b, T29);			      T2m = FMA(T27, T2b, T2l);			      T2g = W[17];			      T24 = FNMS(T1Y, T1W, T23);			      T22 = FMA(T1Y, T21, T1X);			 }			 {			      E T2L, T2O, T2P, T2v, T2N, T2X, T2n, T2s, T2A, T2F, T2r, T2H, T2R, T2J, T2B;			      E T2C;			      {				   E T2q, T2k, T2i, T2M, T2x;				   T2k = FNMS(T2g, T2e, T2j);				   T2i = FMA(T2g, T2h, T2f);				   Im[WS(rs, 1)] = T24 - T26;				   Ip[WS(rs, 1)] = T24 + T26;				   Rm[WS(rs, 1)] = T22 + T1S;				   Rp[WS(rs, 1)] = T1S - T22;				   Im[WS(rs, 4)] = T2k - T2m;				   Ip[WS(rs, 4)] = T2k + T2m;				   Rm[WS(rs, 4)] = T2i + T2c;				   Rp[WS(rs, 4)] = T2c - T2i;				   T2q = T2o + T2p;				   T2M = T2o - T2p;				   T2L = W[18];				   T2O = W[19];				   T2P = T2t - T2u;				   T2v = T2t + T2u;				   T2N = T2L * T2M;				   T2X = T2O * T2M;				   T2n = W[6];				   T2s = W[7];				   T2S = T2y - T2z;				   T2A = T2y + T2z;				   T2F = T2D - T2E;				   T2V = T2D + T2E;				   T2r = T2n * T2q;				   T2H = T2s * T2q;				   T2x = W[8];				   T2R = W[20];				   T2J = T2x * T2F;				   T2B = T2x * T2A;			      }			      T2w = FNMS(T2s, T2v, T2r);			      T2Z = T2R * T2V;			      T2T = T2R * T2S;			      T2I = FMA(T2n, T2v, T2H);			      T2C = W[9];			      T2Q = FNMS(T2O, T2P, T2N);			      T2Y = FMA(T2L, T2P, T2X);			      T2U = W[21];			      T2K = FNMS(T2C, T2A, T2J);			      T2G = FMA(T2C, T2F, T2B);			 }		    }	       }	  }	  T30 = FNMS(T2U, T2S, T2Z);	  T2W = FMA(T2U, T2V, T2T);	  Im[WS(rs, 2)] = T2K - T2I;	  Ip[WS(rs, 2)] = T2I + T2K;	  Rm[WS(rs, 2)] = T2w + T2G;	  Rp[WS(rs, 2)] = T2w - T2G;	  Im[WS(rs, 5)] = T30 - T2Y;	  Ip[WS(rs, 5)] = T2Y + T30;	  Rm[WS(rs, 5)] = T2Q + T2W;	  Rp[WS(rs, 5)] = T2Q - T2W;     }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -