⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 r2cf_128.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 5 页
字号:
		    Ti = Tg + Th;		    T28 = Tg - Th;		    Tq = R0[WS(rs, 12)];		    Tr = R0[WS(rs, 44)];		    Ts = Tq + Tr;		    T2c = Tq - Tr;	       }	       {		    E Tj, Tk, Tn, To;		    Tj = R0[WS(rs, 20)];		    Tk = R0[WS(rs, 52)];		    Tl = Tj + Tk;		    T29 = Tj - Tk;		    Tn = R0[WS(rs, 60)];		    To = R0[WS(rs, 28)];		    Tp = Tn + To;		    T2b = Tn - To;	       }	       {		    E Tm, Tt, TcE, TcF;		    Tm = Ti + Tl;		    Tt = Tp + Ts;		    Tu = Tm + Tt;		    Tbq = Tt - Tm;		    TcE = Ti - Tl;		    TcF = Tp - Ts;		    TcG = KP707106781 * (TcE + TcF);		    TdV = KP707106781 * (TcF - TcE);	       }	       {		    E T2a, T2d, T5T, T5U;		    T2a = FNMS(KP382683432, T29, KP923879532 * T28);		    T2d = FMA(KP923879532, T2b, KP382683432 * T2c);		    T2e = T2a + T2d;		    T8z = T2d - T2a;		    T5T = FNMS(KP923879532, T2c, KP382683432 * T2b);		    T5U = FMA(KP382683432, T28, KP923879532 * T29);		    T5V = T5T - T5U;		    T7s = T5U + T5T;	       }	  }	  {	       E Ty, T2g, TB, T2m, TF, T2l, TI, T2j;	       {		    E Tw, Tx, Tz, TA;		    Tw = R0[WS(rs, 2)];		    Tx = R0[WS(rs, 34)];		    Ty = Tw + Tx;		    T2g = Tw - Tx;		    Tz = R0[WS(rs, 18)];		    TA = R0[WS(rs, 50)];		    TB = Tz + TA;		    T2m = Tz - TA;		    {			 E TD, TE, T2h, TG, TH, T2i;			 TD = R0[WS(rs, 10)];			 TE = R0[WS(rs, 42)];			 T2h = TD - TE;			 TG = R0[WS(rs, 58)];			 TH = R0[WS(rs, 26)];			 T2i = TG - TH;			 TF = TD + TE;			 T2l = KP707106781 * (T2i - T2h);			 TI = TG + TH;			 T2j = KP707106781 * (T2h + T2i);		    }	       }	       {		    E TC, TJ, TcI, TcJ;		    TC = Ty + TB;		    TJ = TF + TI;		    TK = TC + TJ;		    Ta6 = TC - TJ;		    TcI = Ty - TB;		    TcJ = TI - TF;		    TcK = FMA(KP923879532, TcI, KP382683432 * TcJ);		    TdX = FNMS(KP382683432, TcI, KP923879532 * TcJ);	       }	       {		    E T2k, T2n, T7u, T7v;		    T2k = T2g + T2j;		    T2n = T2l - T2m;		    T2o = FMA(KP980785280, T2k, KP195090322 * T2n);		    T5X = FNMS(KP195090322, T2k, KP980785280 * T2n);		    T7u = T2g - T2j;		    T7v = T2m + T2l;		    T7w = FMA(KP831469612, T7u, KP555570233 * T7v);		    T8B = FNMS(KP555570233, T7u, KP831469612 * T7v);	       }	  }	  {	       E TN, T2p, TQ, T2v, TU, T2u, TX, T2s;	       {		    E TL, TM, TO, TP;		    TL = R0[WS(rs, 62)];		    TM = R0[WS(rs, 30)];		    TN = TL + TM;		    T2p = TL - TM;		    TO = R0[WS(rs, 14)];		    TP = R0[WS(rs, 46)];		    TQ = TO + TP;		    T2v = TO - TP;		    {			 E TS, TT, T2q, TV, TW, T2r;			 TS = R0[WS(rs, 6)];			 TT = R0[WS(rs, 38)];			 T2q = TS - TT;			 TV = R0[WS(rs, 54)];			 TW = R0[WS(rs, 22)];			 T2r = TV - TW;			 TU = TS + TT;			 T2u = KP707106781 * (T2r - T2q);			 TX = TV + TW;			 T2s = KP707106781 * (T2q + T2r);		    }	       }	       {		    E TR, TY, TcL, TcM;		    TR = TN + TQ;		    TY = TU + TX;		    TZ = TR + TY;		    Ta7 = TR - TY;		    TcL = TN - TQ;		    TcM = TX - TU;		    TcN = FNMS(KP382683432, TcM, KP923879532 * TcL);		    TdY = FMA(KP382683432, TcL, KP923879532 * TcM);	       }	       {		    E T2t, T2w, T7x, T7y;		    T2t = T2p + T2s;		    T2w = T2u - T2v;		    T2x = FNMS(KP195090322, T2w, KP980785280 * T2t);		    T5Y = FMA(KP195090322, T2t, KP980785280 * T2w);		    T7x = T2p - T2s;		    T7y = T2v + T2u;		    T7z = FNMS(KP555570233, T7y, KP831469612 * T7x);		    T8C = FMA(KP555570233, T7x, KP831469612 * T7y);	       }	  }	  {	       E T14, T2N, T17, T2D, T1b, T2O, T1e, T2C, T1j, T1m, T2K, TcR, T2Q, T1q, T1t;	       E T2H, TcS, T2R;	       {		    E T12, T13, T15, T16;		    T12 = R0[WS(rs, 1)];		    T13 = R0[WS(rs, 33)];		    T14 = T12 + T13;		    T2N = T12 - T13;		    T15 = R0[WS(rs, 17)];		    T16 = R0[WS(rs, 49)];		    T17 = T15 + T16;		    T2D = T15 - T16;	       }	       {		    E T19, T1a, T2B, T1c, T1d, T2A;		    T19 = R0[WS(rs, 9)];		    T1a = R0[WS(rs, 41)];		    T2B = T19 - T1a;		    T1c = R0[WS(rs, 57)];		    T1d = R0[WS(rs, 25)];		    T2A = T1c - T1d;		    T1b = T19 + T1a;		    T2O = KP707106781 * (T2B + T2A);		    T1e = T1c + T1d;		    T2C = KP707106781 * (T2A - T2B);	       }	       {		    E T2I, T2J, T2F, T2G;		    {			 E T1h, T1i, T1k, T1l;			 T1h = R0[WS(rs, 5)];			 T1i = R0[WS(rs, 37)];			 T1j = T1h + T1i;			 T2I = T1h - T1i;			 T1k = R0[WS(rs, 21)];			 T1l = R0[WS(rs, 53)];			 T1m = T1k + T1l;			 T2J = T1k - T1l;		    }		    T2K = FMA(KP382683432, T2I, KP923879532 * T2J);		    TcR = T1j - T1m;		    T2Q = FNMS(KP382683432, T2J, KP923879532 * T2I);		    {			 E T1o, T1p, T1r, T1s;			 T1o = R0[WS(rs, 61)];			 T1p = R0[WS(rs, 29)];			 T1q = T1o + T1p;			 T2F = T1o - T1p;			 T1r = R0[WS(rs, 13)];			 T1s = R0[WS(rs, 45)];			 T1t = T1r + T1s;			 T2G = T1r - T1s;		    }		    T2H = FNMS(KP923879532, T2G, KP382683432 * T2F);		    TcS = T1q - T1t;		    T2R = FMA(KP923879532, T2F, KP382683432 * T2G);	       }	       {		    E T18, T1f, TcQ, TcT;		    T18 = T14 + T17;		    T1f = T1b + T1e;		    T1g = T18 + T1f;		    Taa = T18 - T1f;		    TcQ = T14 - T17;		    TcT = KP707106781 * (TcR + TcS);		    TcU = TcQ + TcT;		    TeA = TcQ - TcT;	       }	       {		    E TcV, TcW, T1n, T1u;		    TcV = T1e - T1b;		    TcW = KP707106781 * (TcS - TcR);		    TcX = TcV + TcW;		    Tez = TcW - TcV;		    T1n = T1j + T1m;		    T1u = T1q + T1t;		    T1v = T1n + T1u;		    Tab = T1u - T1n;	       }	       {		    E T2E, T2L, T7C, T7D;		    T2E = T2C - T2D;		    T2L = T2H - T2K;		    T2M = T2E + T2L;		    T6z = T2L - T2E;		    T7C = T2N - T2O;		    T7D = T2K + T2H;		    T7E = T7C + T7D;		    T9e = T7C - T7D;	       }	       {		    E T7F, T7G, T2P, T2S;		    T7F = T2D + T2C;		    T7G = T2R - T2Q;		    T7H = T7F + T7G;		    T9d = T7G - T7F;		    T2P = T2N + T2O;		    T2S = T2Q + T2R;		    T2T = T2P + T2S;		    T6A = T2P - T2S;	       }	  }	  {	       E T4z, TaP, T5B, TaQ, T4G, TaT, T5y, TaS, Tbf, Tbg, T4O, Tdw, T5E, Tbc, Tbd;	       E T4V, Tdx, T5D;	       {		    E T4x, T4y, T5z, T5A;		    T4x = R1[WS(rs, 63)];		    T4y = R1[WS(rs, 31)];		    T4z = T4x - T4y;		    TaP = T4x + T4y;		    T5z = R1[WS(rs, 15)];		    T5A = R1[WS(rs, 47)];		    T5B = T5z - T5A;		    TaQ = T5z + T5A;	       }	       {		    E T4A, T4B, T4C, T4D, T4E, T4F;		    T4A = R1[WS(rs, 7)];		    T4B = R1[WS(rs, 39)];		    T4C = T4A - T4B;		    T4D = R1[WS(rs, 55)];		    T4E = R1[WS(rs, 23)];		    T4F = T4D - T4E;		    T4G = KP707106781 * (T4C + T4F);		    TaT = T4D + T4E;		    T5y = KP707106781 * (T4F - T4C);		    TaS = T4A + T4B;	       }	       {		    E T4K, T4N, T4R, T4U;		    {			 E T4I, T4J, T4L, T4M;			 T4I = R1[WS(rs, 3)];			 T4J = R1[WS(rs, 35)];			 T4K = T4I - T4J;			 Tbf = T4I + T4J;			 T4L = R1[WS(rs, 19)];			 T4M = R1[WS(rs, 51)];			 T4N = T4L - T4M;			 Tbg = T4L + T4M;		    }		    T4O = FNMS(KP382683432, T4N, KP923879532 * T4K);		    Tdw = Tbf - Tbg;		    T5E = FMA(KP382683432, T4K, KP923879532 * T4N);		    {			 E T4P, T4Q, T4S, T4T;			 T4P = R1[WS(rs, 59)];			 T4Q = R1[WS(rs, 27)];			 T4R = T4P - T4Q;			 Tbc = T4P + T4Q;			 T4S = R1[WS(rs, 11)];			 T4T = R1[WS(rs, 43)];			 T4U = T4S - T4T;			 Tbd = T4S + T4T;		    }		    T4V = FMA(KP923879532, T4R, KP382683432 * T4U);		    Tdx = Tbc - Tbd;		    T5D = FNMS(KP923879532, T4U, KP382683432 * T4R);	       }	       {		    E T4H, T4W, Tdv, Tdy;		    T4H = T4z + T4G;		    T4W = T4O + T4V;		    T4X = T4H + T4W;		    T6L = T4H - T4W;		    Tdv = TaP - TaQ;		    Tdy = KP707106781 * (Tdw + Tdx);		    Tdz = Tdv + Tdy;		    TeL = Tdv - Tdy;	       }	       {		    E TdI, TdJ, T5C, T5F;		    TdI = TaT - TaS;		    TdJ = KP707106781 * (Tdx - Tdw);		    TdK = TdI + TdJ;		    TeP = TdJ - TdI;		    T5C = T5y - T5B;		    T5F = T5D - T5E;		    T5G = T5C + T5F;		    T6P = T5F - T5C;	       }	       {		    E T8b, T8c, TaR, TaU;		    T8b = T4z - T4G;		    T8c = T5E + T5D;		    T8d = T8b + T8c;		    T9p = T8b - T8c;		    TaR = TaP + TaQ;		    TaU = TaS + TaT;		    TaV = TaR - TaU;		    Tc3 = TaR + TaU;	       }	       {		    E Tbe, Tbh, T8m, T8n;		    Tbe = Tbc + Tbd;		    Tbh = Tbf + Tbg;		    Tbi = Tbe - Tbh;		    Tc4 = Tbh + Tbe;		    T8m = T5B + T5y;		    T8n = T4V - T4O;		    T8o = T8m + T8n;		    T9t = T8n - T8m;	       }	  }	  {	       E T3k, Tai, T4m, Taj, T3r, Tam, T4j, Tal, TaI, TaJ, T3z, Tdb, T4p, TaF, TaG;	       E T3G, Tdc, T4o;	       {		    E T3i, T3j, T4k, T4l;		    T3i = R1[0];		    T3j = R1[WS(rs, 32)];		    T3k = T3i - T3j;		    Tai = T3i + T3j;		    T4k = R1[WS(rs, 16)];		    T4l = R1[WS(rs, 48)];		    T4m = T4k - T4l;		    Taj = T4k + T4l;	       }	       {		    E T3l, T3m, T3n, T3o, T3p, T3q;		    T3l = R1[WS(rs, 8)];		    T3m = R1[WS(rs, 40)];		    T3n = T3l - T3m;		    T3o = R1[WS(rs, 56)];		    T3p = R1[WS(rs, 24)];		    T3q = T3o - T3p;		    T3r = KP707106781 * (T3n + T3q);		    Tam = T3o + T3p;		    T4j = KP707106781 * (T3q - T3n);		    Tal = T3l + T3m;	       }	       {		    E T3v, T3y, T3C, T3F;		    {			 E T3t, T3u, T3w, T3x;			 T3t = R1[WS(rs, 4)];			 T3u = R1[WS(rs, 36)];			 T3v = T3t - T3u;			 TaI = T3t + T3u;			 T3w = R1[WS(rs, 20)];			 T3x = R1[WS(rs, 52)];			 T3y = T3w - T3x;			 TaJ = T3w + T3x;		    }		    T3z = FNMS(KP382683432, T3y, KP923879532 * T3v);		    Tdb = TaI - TaJ;		    T4p = FMA(KP382683432, T3v, KP923879532 * T3y);		    {			 E T3A, T3B, T3D, T3E;			 T3A = R1[WS(rs, 60)];			 T3B = R1[WS(rs, 28)];			 T3C = T3A - T3B;			 TaF = T3A + T3B;			 T3D = R1[WS(rs, 12)];			 T3E = R1[WS(rs, 44)];			 T3F = T3D - T3E;			 TaG = T3D + T3E;		    }		    T3G = FMA(KP923879532, T3C, KP382683432 * T3F);		    Tdc = TaF - TaG;		    T4o = FNMS(KP923879532, T3F, KP382683432 * T3C);	       }	       {		    E T3s, T3H, Tda, Tdd;		    T3s = T3k + T3r;		    T3H = T3z + T3G;		    T3I = T3s + T3H;		    T6H = T3s - T3H;		    Tda = Tai - Taj;		    Tdd = KP707106781 * (Tdb + Tdc);		    Tde = Tda + Tdd;		    TeH = Tda - Tdd;	       }	       {		    E Td

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -