📄 hc2cf2_16.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:02:54 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2c -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cf2_16 -include hc2cf.h *//* * This function contains 196 FP additions, 134 FP multiplications, * (or, 104 additions, 42 multiplications, 92 fused multiply/add), * 100 stack variables, 3 constants, and 64 memory accesses */#include "hc2cf.h"static void hc2cf2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) { E T3S, T3R; { E T2, Tf, TM, TO, T3, Tg, TN, TS, T4, Tp, T6, T5, Th; T2 = W[0]; Tf = W[2]; TM = W[6]; TO = W[7]; T3 = W[4]; Tg = T2 * Tf; TN = T2 * TM; TS = T2 * TO; T4 = T2 * T3; Tp = Tf * T3; T6 = W[5]; T5 = W[1]; Th = W[3]; { E TZ, Te, T1U, T3A, T3L, T2D, T1G, T2B, T3h, T1R, T2w, T2I, T3i, Tx, T3M; E T1Z, T3w, TL, T26, T25, T37, T1d, T2o, T2l, T3c, T1s, T2m, T2t, T3d, TX; E T10, TV, T2a, TY, T2b; { E TF, TP, TT, Tq, TW, Tz, Tu, TI, TC, T1m, T1f, T1p, T1j, Tr, Ts; E Tv, To, T1W; { E Ti, Tm, T1L, T1O, T1D, T1A, T1x, T2z, T1F, T2y; { E T1, T7, Tb, T3z, T8, T1z, T9, Tc; { E T1i, T1e, T1C, T1y, Tt, Ta, Tl; T1 = Rp[0]; Tt = Tf * T6; Ta = T2 * T6; T7 = FMA(T5, T6, T4); TF = FNMS(T5, T6, T4); TP = FMA(T5, TO, TN); TT = FNMS(T5, TM, TS); Tq = FNMS(Th, T6, Tp); TW = FMA(Th, T6, Tp); Tz = FMA(T5, Th, Tg); Ti = FNMS(T5, Th, Tg); Tl = T2 * Th; Tu = FMA(Th, T3, Tt); TZ = FNMS(Th, T3, Tt); TI = FMA(T5, T3, Ta); Tb = FNMS(T5, T3, Ta); T1i = Ti * T6; T1e = Ti * T3; T1C = Tz * T6; T1y = Tz * T3; Tm = FMA(T5, Tf, Tl); TC = FNMS(T5, Tf, Tl); T3z = Rm[0]; T8 = Rp[WS(rs, 4)]; T1m = FNMS(Tm, T6, T1e); T1f = FMA(Tm, T6, T1e); T1p = FMA(Tm, T3, T1i); T1j = FNMS(Tm, T3, T1i); T1L = FNMS(TC, T6, T1y); T1z = FMA(TC, T6, T1y); T1O = FMA(TC, T3, T1C); T1D = FNMS(TC, T3, T1C); T9 = T7 * T8; Tc = Rm[WS(rs, 4)]; } { E T1u, T1w, T1v, T2x, T3y, T1B, T1E, Td, T3x; T1u = Ip[WS(rs, 7)]; T1w = Im[WS(rs, 7)]; T1A = Ip[WS(rs, 3)]; Td = FMA(Tb, Tc, T9); T3x = T7 * Tc; T1v = TM * T1u; T2x = TM * T1w; Te = T1 + Td; T1U = T1 - Td; T3y = FNMS(Tb, T8, T3x); T1B = T1z * T1A; T1E = Im[WS(rs, 3)]; T1x = FMA(TO, T1w, T1v); T3A = T3y + T3z; T3L = T3z - T3y; T2z = T1z * T1E; T1F = FMA(T1D, T1E, T1B); T2y = FNMS(TO, T1u, T2x); } } { E T1H, T1I, T1J, T1M, T1P, T2A; T1H = Ip[WS(rs, 1)]; T2A = FNMS(T1D, T1A, T2z); T2D = T1x - T1F; T1G = T1x + T1F; T1I = Tf * T1H; T2B = T2y - T2A; T3h = T2y + T2A; T1J = Im[WS(rs, 1)]; T1M = Ip[WS(rs, 5)]; T1P = Im[WS(rs, 5)]; { E Tj, Tk, Tn, T1V; { E T1K, T2F, T1Q, T2H, T2E, T1N, T2G; Tj = Rp[WS(rs, 2)]; T1K = FMA(Th, T1J, T1I); T2E = Tf * T1J; T1N = T1L * T1M; T2G = T1L * T1P; Tk = Ti * Tj; T2F = FNMS(Th, T1H, T2E); T1Q = FMA(T1O, T1P, T1N); T2H = FNMS(T1O, T1M, T2G); Tn = Rm[WS(rs, 2)]; Tr = Rp[WS(rs, 6)]; T1R = T1K + T1Q; T2w = T1Q - T1K; T2I = T2F - T2H; T3i = T2F + T2H; T1V = Ti * Tn; Ts = Tq * Tr; Tv = Rm[WS(rs, 6)]; } To = FMA(Tm, Tn, Tk); T1W = FNMS(Tm, Tj, T1V); } } } { E T19, T1b, T18, T2i, T1a, T2j; { E TE, T22, TK, T24; { E TA, TD, TB, T21, TG, TJ, TH, T23, T1Y, Tw, T1X; TA = Rp[WS(rs, 1)]; Tw = FMA(Tu, Tv, Ts); T1X = Tq * Tv; TD = Rm[WS(rs, 1)]; TB = Tz * TA; Tx = To + Tw; T3M = To - Tw; T1Y = FNMS(Tu, Tr, T1X); T21 = Tz * TD; TG = Rp[WS(rs, 5)]; TJ = Rm[WS(rs, 5)]; T1Z = T1W - T1Y; T3w = T1W + T1Y; TH = TF * TG; T23 = TF * TJ; TE = FMA(TC, TD, TB); T22 = FNMS(TC, TA, T21); TK = FMA(TI, TJ, TH); T24 = FNMS(TI, TG, T23); } { E T15, T17, T16, T2h; T15 = Ip[0]; T17 = Im[0]; TL = TE + TK; T26 = TE - TK; T25 = T22 - T24; T37 = T22 + T24; T16 = T2 * T15; T2h = T2 * T17; T19 = Ip[WS(rs, 4)]; T1b = Im[WS(rs, 4)]; T18 = FMA(T5, T17, T16); T2i = FNMS(T5, T15, T2h); T1a = T3 * T19; T2j = T3 * T1b; } } { E T1n, T1q, T1l, T2q, T1o, T2r; { E T1g, T1k, T1h, T2p, T1c, T2k; T1g = Ip[WS(rs, 2)]; T1k = Im[WS(rs, 2)]; T1c = FMA(T6, T1b, T1a); T2k = FNMS(T6, T19, T2j); T1h = T1f * T1g; T2p = T1f * T1k; T1d = T18 + T1c; T2o = T18 - T1c; T2l = T2i - T2k; T3c = T2i + T2k; T1n = Ip[WS(rs, 6)]; T1q = Im[WS(rs, 6)]; T1l = FMA(T1j, T1k, T1h); T2q = FNMS(T1j, T1g, T2p); T1o = T1m * T1n; T2r = T1m * T1q; } { E TQ, TU, TR, T29, T1r, T2s; TQ = Rp[WS(rs, 7)]; TU = Rm[WS(rs, 7)]; T1r = FMA(T1p, T1q, T1o); T2s = FNMS(T1p, T1n, T2r); TR = TP * TQ; T29 = TP * TU; T1s = T1l + T1r; T2m = T1l - T1r; T2t = T2q - T2s; T3d = T2q + T2s; TX = Rp[WS(rs, 3)]; T10 = Rm[WS(rs, 3)]; TV = FMA(TT, TU, TR); T2a = FNMS(TT, TQ, T29); TY = TW * TX; T2b = TW * T10; } } } } { E T36, T3G, T3b, T3g, T28, T2d, T3F, T39, T3e, T3q, T3C, T3j, T3u, T3t; { E T3D, T1T, T3r, T14, T3E, T3s; { E Ty, T3B, T11, T2c, T13, T3v; T36 = Te - Tx; Ty = Te + Tx; T3B = T3w + T3A; T3G = T3A - T3w; T11 = FMA(TZ, T10, TY); T2c = FNMS(TZ, TX, T2b); { E T1t, T1S, T12, T38; T3b = T1d - T1s; T1t = T1d + T1s; T1S = T1G + T1R; T3g = T1G - T1R; T12 = TV + T11; T28 = TV - T11; T2d = T2a - T2c; T38 = T2a + T2c; T3D = T1S - T1t; T1T = T1t + T1S; T13 = TL + T12; T3F = T12 - TL; T39 = T37 - T38; T3v = T37 + T38; } T3e = T3c - T3d; T3r = T3c + T3d; T3q = Ty - T13; T14 = Ty + T13; T3E = T3B - T3v; T3C = T3v + T3B; T3s = T3h + T3i; T3j = T3h - T3i; } Rm[WS(rs, 7)] = T14 - T1T; Rp[0] = T14 + T1T; Im[WS(rs, 3)] = T3D - T3E; T3u = T3r + T3s; T3t = T3r - T3s; Ip[WS(rs, 4)] = T3D + T3E; } { E T3m, T3a, T3J, T3H; Ip[0] = T3u + T3C; Im[WS(rs, 7)] = T3u - T3C; Rp[WS(rs, 4)] = T3q + T3t; Rm[WS(rs, 3)] = T3q - T3t; T3m = T36 - T39; T3a = T36 + T39; T3J = T3G - T3F; T3H = T3F + T3G; { E T2Q, T20, T3N, T3T, T2J, T2C, T3O, T2f, T34, T30, T2W, T2V, T3U, T2T, T2N; E T2v; { E T2R, T27, T2e, T2S; { E T3n, T3f, T3o, T3k; T2Q = T1U + T1Z; T20 = T1U - T1Z; T3n = T3e - T3b; T3f = T3b + T3e; T3o = T3g + T3j; T3k = T3g - T3j; T3N = T3L - T3M; T3T = T3M + T3L; { E T3p, T3I, T3K, T3l; T3p = T3n - T3o; T3I = T3n + T3o; T3K = T3k - T3f; T3l = T3f + T3k; Rp[WS(rs, 6)] = FMA(KP707106781, T3p, T3m); Rm[WS(rs, 1)] = FNMS(KP707106781, T3p, T3m); Ip[WS(rs, 2)] = FMA(KP707106781, T3I, T3H); Im[WS(rs, 5)] = FMS(KP707106781, T3I, T3H); Ip[WS(rs, 6)] = FMA(KP707106781, T3K, T3J); Im[WS(rs, 1)] = FMS(KP707106781, T3K, T3J); Rp[WS(rs, 2)] = FMA(KP707106781, T3l, T3a); Rm[WS(rs, 5)] = FNMS(KP707106781, T3l, T3a); T2R = T26 + T25; T27 = T25 - T26; T2e = T28 + T2d; T2S = T28 - T2d; } } { E T2Y, T2Z, T2n, T2u; T2J = T2D - T2I; T2Y = T2D + T2I; T2Z = T2B + T2w; T2C = T2w - T2B; T3O = T27 + T2e; T2f = T27 - T2e; T34 = FMA(KP414213562, T2Y, T2Z); T30 = FNMS(KP414213562, T2Z, T2Y); T2W = T2l - T2m; T2n = T2l + T2m; T2u = T2o - T2t; T2V = T2o + T2t; T3U = T2S - T2R; T2T = T2R + T2S; T2N = FNMS(KP414213562, T2n, T2u); T2v = FMA(KP414213562, T2u, T2n); } } { E T33, T2X, T3X, T3Y; { E T2M, T2g, T2O, T2K, T3V, T3W, T2P, T2L; T2M = FNMS(KP707106781, T2f, T20); T2g = FMA(KP707106781, T2f, T20); T33 = FNMS(KP414213562, T2V, T2W); T2X = FMA(KP414213562, T2W, T2V); T2O = FNMS(KP414213562, T2C, T2J); T2K = FMA(KP414213562, T2J, T2C); T3V = FMA(KP707106781, T3U, T3T); T3X = FNMS(KP707106781, T3U, T3T); T3W = T2O - T2N; T2P = T2N + T2O; T3Y = T2K - T2v; T2L = T2v + T2K; Ip[WS(rs, 3)] = FMA(KP923879532, T3W, T3V); Im[WS(rs, 4)] = FMS(KP923879532, T3W, T3V); Rp[WS(rs, 3)] = FMA(KP923879532, T2L, T2g); Rm[WS(rs, 4)] = FNMS(KP923879532, T2L, T2g); Rm[0] = FMA(KP923879532, T2P, T2M); Rp[WS(rs, 7)] = FNMS(KP923879532, T2P, T2M); } { E T32, T3P, T3Q, T35, T2U, T31; T32 = FNMS(KP707106781, T2T, T2Q); T2U = FMA(KP707106781, T2T, T2Q); T31 = T2X + T30; T3S = T30 - T2X; T3R = FNMS(KP707106781, T3O, T3N); T3P = FMA(KP707106781, T3O, T3N); Ip[WS(rs, 7)] = FMA(KP923879532, T3Y, T3X); Im[0] = FMS(KP923879532, T3Y, T3X); Rp[WS(rs, 1)] = FMA(KP923879532, T31, T2U); Rm[WS(rs, 6)] = FNMS(KP923879532, T31, T2U); T3Q = T33 + T34; T35 = T33 - T34; Ip[WS(rs, 1)] = FMA(KP923879532, T3Q, T3P); Im[WS(rs, 6)] = FMS(KP923879532, T3Q, T3P); Rp[WS(rs, 5)] = FMA(KP923879532, T35, T32); Rm[WS(rs, 2)] = FNMS(KP923879532, T35, T32); } } } } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -