📄 hc2cf_20.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:02:46 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2c -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cf_20 -include hc2cf.h *//* * This function contains 246 FP additions, 148 FP multiplications, * (or, 136 additions, 38 multiplications, 110 fused multiply/add), * 97 stack variables, 4 constants, and 80 memory accesses */#include "hc2cf.h"static void hc2cf_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT m; for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) { E T4P, T4Y, T50, T4U, T4S, T4T, T4Z, T4V; { E T4N, T4r, T8, T2i, T4n, T2n, T4O, Tl, T2v, T3v, T3T, T4f, TN, T2b, T3F; E T3p, T2R, T3z, T43, T4b, T27, T2f, T3J, T33, T2K, T3y, T40, T4c, T1G, T2e; E T3I, T3a, T2C, T3w, T3W, T4e, T1e, T2c, T3G, T3i; { E T1, T4q, T3, T6, T2, T5; T1 = Rp[0]; T4q = Rm[0]; T3 = Rp[WS(rs, 5)]; T6 = Rm[WS(rs, 5)]; T2 = W[18]; T5 = W[19]; { E Ta, Td, Tg, T2j, Tb, Tj, Tf, Tc, Ti; { E T4o, T4, T9, T4p, T7; Ta = Ip[WS(rs, 2)]; Td = Im[WS(rs, 2)]; T4o = T2 * T6; T4 = T2 * T3; T9 = W[8]; Tg = Ip[WS(rs, 7)]; T4p = FNMS(T5, T3, T4o); T7 = FMA(T5, T6, T4); T2j = T9 * Td; Tb = T9 * Ta; T4N = T4q - T4p; T4r = T4p + T4q; T8 = T1 + T7; T2i = T1 - T7; Tj = Im[WS(rs, 7)]; Tf = W[28]; } Tc = W[9]; Ti = W[29]; { E T3l, Ts, T2t, TL, TB, TE, TD, T3n, Ty, T2q, TC; { E TH, TK, TJ, T2s, TI; { E To, Tr, Tp, T3k, Tq, TG; { E T2k, Te, T2m, Tk, T2l, Th, Tn; To = Rp[WS(rs, 2)]; T2l = Tf * Tj; Th = Tf * Tg; T2k = FNMS(Tc, Ta, T2j); Te = FMA(Tc, Td, Tb); T2m = FNMS(Ti, Tg, T2l); Tk = FMA(Ti, Tj, Th); Tr = Rm[WS(rs, 2)]; Tn = W[6]; T4n = T2k + T2m; T2n = T2k - T2m; T4O = Te - Tk; Tl = Te + Tk; Tp = Tn * To; T3k = Tn * Tr; } Tq = W[7]; TH = Ip[WS(rs, 9)]; TK = Im[WS(rs, 9)]; TG = W[36]; T3l = FNMS(Tq, To, T3k); Ts = FMA(Tq, Tr, Tp); TJ = W[37]; T2s = TG * TK; TI = TG * TH; } { E Tu, Tx, Tt, Tw, T3m, Tv, TA; Tu = Rp[WS(rs, 7)]; Tx = Rm[WS(rs, 7)]; T2t = FNMS(TJ, TH, T2s); TL = FMA(TJ, TK, TI); Tt = W[26]; Tw = W[27]; TB = Ip[WS(rs, 4)]; TE = Im[WS(rs, 4)]; T3m = Tt * Tx; Tv = Tt * Tu; TA = W[16]; TD = W[17]; T3n = FNMS(Tw, Tu, T3m); Ty = FMA(Tw, Tx, Tv); T2q = TA * TE; TC = TA * TB; } } { E T3o, T3R, Tz, T2p, T2r, TF; T3o = T3l - T3n; T3R = T3l + T3n; Tz = Ts + Ty; T2p = Ts - Ty; T2r = FNMS(TD, TB, T2q); TF = FMA(TD, TE, TC); { E T3S, T2u, TM, T3j; T3S = T2r + T2t; T2u = T2r - T2t; TM = TF + TL; T3j = TL - TF; T2v = T2p - T2u; T3v = T2p + T2u; T3T = T3R + T3S; T4f = T3S - T3R; TN = Tz - TM; T2b = Tz + TM; T3F = T3o + T3j; T3p = T3j - T3o; } } } } } { E T2Z, T1M, T2P, T25, T1V, T1Y, T1X, T31, T1S, T2M, T1W; { E T21, T24, T23, T2O, T22; { E T1I, T1L, T1H, T1K, T2Y, T1J, T20; T1I = Rp[WS(rs, 6)]; T1L = Rm[WS(rs, 6)]; T1H = W[22]; T1K = W[23]; T21 = Ip[WS(rs, 3)]; T24 = Im[WS(rs, 3)]; T2Y = T1H * T1L; T1J = T1H * T1I; T20 = W[12]; T23 = W[13]; T2Z = FNMS(T1K, T1I, T2Y); T1M = FMA(T1K, T1L, T1J); T2O = T20 * T24; T22 = T20 * T21; } { E T1O, T1R, T1N, T1Q, T30, T1P, T1U; T1O = Rp[WS(rs, 1)]; T1R = Rm[WS(rs, 1)]; T2P = FNMS(T23, T21, T2O); T25 = FMA(T23, T24, T22); T1N = W[2]; T1Q = W[3]; T1V = Ip[WS(rs, 8)]; T1Y = Im[WS(rs, 8)]; T30 = T1N * T1R; T1P = T1N * T1O; T1U = W[32]; T1X = W[33]; T31 = FNMS(T1Q, T1O, T30); T1S = FMA(T1Q, T1R, T1P); T2M = T1U * T1Y; T1W = T1U * T1V; } } { E T32, T41, T1T, T2L, T2N, T1Z; T32 = T2Z - T31; T41 = T2Z + T31; T1T = T1M + T1S; T2L = T1M - T1S; T2N = FNMS(T1X, T1V, T2M); T1Z = FMA(T1X, T1Y, T1W); { E T42, T2Q, T26, T2X; T42 = T2N + T2P; T2Q = T2N - T2P; T26 = T1Z + T25; T2X = T25 - T1Z; T2R = T2L - T2Q; T3z = T2L + T2Q; T43 = T41 + T42; T4b = T42 - T41; T27 = T1T - T26; T2f = T1T + T26; T3J = T32 + T2X; T33 = T2X - T32; } } } { E T36, T1l, T2I, T1E, T1u, T1x, T1w, T38, T1r, T2F, T1v; { E T1A, T1D, T1C, T2H, T1B; { E T1h, T1k, T1g, T1j, T35, T1i, T1z; T1h = Rp[WS(rs, 4)]; T1k = Rm[WS(rs, 4)]; T1g = W[14]; T1j = W[15]; T1A = Ip[WS(rs, 1)]; T1D = Im[WS(rs, 1)]; T35 = T1g * T1k; T1i = T1g * T1h; T1z = W[4]; T1C = W[5]; T36 = FNMS(T1j, T1h, T35); T1l = FMA(T1j, T1k, T1i); T2H = T1z * T1D; T1B = T1z * T1A; } { E T1n, T1q, T1m, T1p, T37, T1o, T1t; T1n = Rp[WS(rs, 9)]; T1q = Rm[WS(rs, 9)]; T2I = FNMS(T1C, T1A, T2H); T1E = FMA(T1C, T1D, T1B); T1m = W[34]; T1p = W[35]; T1u = Ip[WS(rs, 6)]; T1x = Im[WS(rs, 6)]; T37 = T1m * T1q; T1o = T1m * T1n; T1t = W[24]; T1w = W[25]; T38 = FNMS(T1p, T1n, T37); T1r = FMA(T1p, T1q, T1o); T2F = T1t * T1x; T1v = T1t * T1u; } } { E T39, T3Y, T1s, T2E, T2G, T1y; T39 = T36 - T38; T3Y = T36 + T38; T1s = T1l + T1r; T2E = T1l - T1r; T2G = FNMS(T1w, T1u, T2F); T1y = FMA(T1w, T1x, T1v); { E T3Z, T2J, T1F, T34; T3Z = T2G + T2I; T2J = T2G - T2I; T1F = T1y + T1E; T34 = T1E - T1y; T2K = T2E - T2J; T3y = T2E + T2J; T40 = T3Y + T3Z; T4c = T3Z - T3Y; T1G = T1s - T1F; T2e = T1s + T1F; T3I = T39 + T34; T3a = T34 - T39; } } } { E T3e, TT, T2A, T1c, T12, T15, T14, T3g, TZ, T2x, T13; { E T18, T1b, T1a, T2z, T19; { E TP, TS, TO, TR, T3d, TQ, T17; TP = Rp[WS(rs, 8)]; TS = Rm[WS(rs, 8)]; TO = W[30]; TR = W[31]; T18 = Ip[WS(rs, 5)]; T1b = Im[WS(rs, 5)]; T3d = TO * TS; TQ = TO * TP; T17 = W[20]; T1a = W[21]; T3e = FNMS(TR, TP, T3d); TT = FMA(TR, TS, TQ); T2z = T17 * T1b; T19 = T17 * T18; } { E TV, TY, TU, TX, T3f, TW, T11; TV = Rp[WS(rs, 3)]; TY = Rm[WS(rs, 3)]; T2A = FNMS(T1a, T18, T2z); T1c = FMA(T1a, T1b, T19); TU = W[10]; TX = W[11]; T12 = Ip[0]; T15 = Im[0]; T3f = TU * TY; TW = TU * TV; T11 = W[0]; T14 = W[1]; T3g = FNMS(TX, TV, T3f); TZ = FMA(TX, TY, TW); T2x = T11 * T15; T13 = T11 * T12; } } { E T3h, T3U, T10, T2w, T2y, T16; T3h = T3e - T3g; T3U = T3e + T3g; T10 = TT + TZ; T2w = TT - TZ; T2y = FNMS(T14, T12, T2x); T16 = FMA(T14, T15, T13); { E T3V, T2B, T1d, T3c; T3V = T2y + T2A; T2B = T2y - T2A; T1d = T16 + T1c; T3c = T1c - T16; T2C = T2w - T2B; T3w = T2w + T2B; T3W = T3U + T3V; T4e = T3V - T3U; T1e = T10 - T1d; T2c = T10 + T1d; T3G = T3h + T3c; T3i = T3c - T3h; } } } { E T4s, T4k, T4l, T45, T47, T3P, T4y, T4A, T3O; { E T4C, T4B, T2a, T4j, T4h, T4E, T4M, T4K, T4i, T4a; { E Tm, T1f, T4J, T4I, T28, T4d, T4g, T29, T49, T48; T4C = T4c + T4b; T4d = T4b - T4c; T4g = T4e - T4f; T4B = T4f + T4e; T2a = T8 + Tl; Tm = T8 - Tl; T1f = TN + T1e; T4J = T1e - TN; T4I = T1G - T27; T28 = T1G + T27; T4j = FMA(KP618033988, T4d, T4g); T4h = FNMS(KP618033988, T4g, T4d); T29 = T1f + T28; T49 = T1f - T28; T4E = T4r - T4n; T4s = T4n + T4r; Rm[WS(rs, 9)] = Tm + T29; T48 = FNMS(KP250000000, T29, Tm); T4M = FNMS(KP618033988, T4I, T4J); T4K = FMA(KP618033988, T4J, T4I); T4i = FMA(KP559016994, T49, T48); T4a = FNMS(KP559016994, T49, T48); } { E T2d, T4w, T4x, T2g, T2h; { E T3X, T4G, T4F, T44, T4D, T4L, T4H; T4k = T3T + T3W; T3X = T3T - T3W; T4G = T4C - T4B; T4D = T4B + T4C; Rm[WS(rs, 1)] = FMA(KP951056516, T4h, T4a); Rp[WS(rs, 2)] = FNMS(KP951056516, T4h, T4a); Rp[WS(rs, 6)] = FMA(KP951056516, T4j, T4i); Rm[WS(rs, 5)] = FNMS(KP951056516, T4j, T4i); Im[WS(rs, 9)] = T4D - T4E; T4F = FMA(KP250000000, T4D, T4E); T44 = T40 - T43; T4l = T40 + T43; T2d = T2b + T2c; T4w = T2b - T2c; T4L = FMA(KP559016994, T4G, T4F); T4H = FNMS(KP559016994, T4G, T4F); T45 = FMA(KP618033988, T44, T3X); T47 = FNMS(KP618033988, T3X, T44); Ip[WS(rs, 2)] = FMA(KP951056516, T4K, T4H); Im[WS(rs, 1)] = FMS(KP951056516, T4K, T4H); Ip[WS(rs, 6)] = FMA(KP951056516, T4M, T4L); Im[WS(rs, 5)] = FMS(KP951056516, T4M, T4L); T4x = T2f - T2e; T2g = T2e + T2f; } T2h = T2d + T2g; T3P = T2d - T2g; T4y = FNMS(KP618033988, T4x, T4w); T4A = FMA(KP618033988, T4w, T4x); Rp[0] = T2a + T2h; T3O = FNMS(KP250000000, T2h, T2a); } } { E T3u, T54, T5a, T5c, T56, T53; { E T52, T51, T3t, T3r, T2o, T58, T59, T2T, T2V, T4u, T4t, T2U, T3s, T2W; { E T3b, T3q, T46, T3Q, T4m; T52 = T3a + T33; T3b = T33 - T3a; T3q = T3i - T3p; T51 = T3p + T3i; T46 = FNMS(KP559016994, T3P, T3O); T3Q = FMA(KP559016994, T3P, T3O); T4m = T4k + T4l; T4u = T4k - T4l; Rm[WS(rs, 3)] = FMA(KP951056516, T45, T3Q); Rp[WS(rs, 4)] = FNMS(KP951056516, T45, T3Q); Rp[WS(rs, 8)] = FMA(KP951056516, T47, T46); Rm[WS(rs, 7)] = FNMS(KP951056516, T47, T46); Ip[0] = T4m + T4s; T4t = FNMS(KP250000000, T4m, T4s); T3t = FMA(KP618033988, T3b, T3q); T3r = FNMS(KP618033988, T3q, T3b); } T3u = T2i + T2n; T2o = T2i - T2n; { E T4v, T4z, T2D, T2S; T4v = FMA(KP559016994, T4u, T4t); T4z = FNMS(KP559016994, T4u, T4t); T2D = T2v + T2C; T58 = T2v - T2C; T59 = T2K - T2R; T2S = T2K + T2R; Ip[WS(rs, 4)] = FMA(KP951056516, T4y, T4v); Im[WS(rs, 3)] = FMS(KP951056516, T4y, T4v); Ip[WS(rs, 8)] = FMA(KP951056516, T4A, T4z); Im[WS(rs, 7)] = FMS(KP951056516, T4A, T4z); T2T = T2D + T2S; T2V = T2D - T2S; } Rm[WS(rs, 4)] = T2o + T2T; T2U = FNMS(KP250000000, T2T, T2o); T54 = T4O + T4N; T4P = T4N - T4O; T5a = FMA(KP618033988, T59, T58); T5c = FNMS(KP618033988, T58, T59); T3s = FMA(KP559016994, T2V, T2U); T2W = FNMS(KP559016994, T2V, T2U); Rp[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W); Rp[WS(rs, 3)] = FMA(KP951056516, T3r, T2W); Rm[0] = FNMS(KP951056516, T3t, T3s); Rm[WS(rs, 8)] = FMA(KP951056516, T3t, T3s); T56 = T51 - T52; T53 = T51 + T52; } { E T4Q, T4R, T3N, T3L, T4X, T4W, T3B, T3D, T3H, T3K, T55, T3C, T3M, T3E; T4Q = T3F + T3G; T3H = T3F - T3G; T3K = T3I - T3J; T4R = T3I + T3J; Im[WS(rs, 4)] = T53 - T54; T55 = FMA(KP250000000, T53, T54); T3N = FNMS(KP618033988, T3H, T3K); T3L = FMA(KP618033988, T3K, T3H); { E T57, T5b, T3x, T3A; T57 = FNMS(KP559016994, T56, T55); T5b = FMA(KP559016994, T56, T55); T3x = T3v + T3w; T4X = T3v - T3w; T4W = T3y - T3z; T3A = T3y + T3z; Im[0] = -(FMA(KP951056516, T5a, T57)); Im[WS(rs, 8)] = FMS(KP951056516, T5a, T57); Ip[WS(rs, 7)] = FMA(KP951056516, T5c, T5b); Ip[WS(rs, 3)] = FNMS(KP951056516, T5c, T5b); T3B = T3x + T3A; T3D = T3x - T3A; } Rp[WS(rs, 5)] = T3u + T3B; T3C = FNMS(KP250000000, T3B, T3u); T4Y = FNMS(KP618033988, T4X, T4W); T50 = FMA(KP618033988, T4W, T4X); T3M = FNMS(KP559016994, T3D, T3C); T3E = FMA(KP559016994, T3D, T3C); Rp[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E); Rp[WS(rs, 1)] = FMA(KP951056516, T3L, T3E);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -