⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cfdft2_32.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 4 页
字号:
					Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, Taw, Tav));				   }			      }			 }		    }	       }	  }	  Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, TaA, Tax)));	  Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, TaA, Tax));     }}static const tw_instr twinstr[] = {     {TW_CEXP, 1, 1},     {TW_CEXP, 1, 3},     {TW_CEXP, 1, 9},     {TW_CEXP, 1, 27},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, {300, 162, 252, 0} };void X(codelet_hc2cfdft2_32) (planner *p) {     X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include hc2cf.h *//* * This function contains 552 FP additions, 300 FP multiplications, * (or, 440 additions, 188 multiplications, 112 fused multiply/add), * 166 stack variables, 9 constants, and 128 memory accesses */#include "hc2cf.h"static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP277785116, +0.277785116509801112371415406974266437187468595);     DK(KP415734806, +0.415734806151272618539394188808952878369280406);     DK(KP097545161, +0.097545161008064133924142434238511120463845809);     DK(KP490392640, +0.490392640201615224563091118067119518486966865);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     DK(KP191341716, +0.191341716182544885864229992015199433380672281);     DK(KP461939766, +0.461939766255643378064091594698394143411208313);     DK(KP353553390, +0.353553390593273762200422181052424519642417969);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     INT m;     for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) {	  E T1, T4, T2, T5, T7, T1b, T1d, Td, Ti, Tk, Tj, Tl, TL, TR, T2h;	  E T2O, T16, T2l, T10, T2K, Tm, Tq, T3s, T3K, T3w, T3M, T4e, T4u, T4i, T4w;	  E Ty, TE, T3h, T3j, T2q, T2u, T4l, T4n, T1v, T1B, T3E, T3G, T2B, T2F, T3Y;	  E T40, T1f, T1G, T1i, T1H, T1j, T1M, T1n, T1I, T23, T2U, T26, T2V, T27, T30;	  E T2b, T2W;	  {	       E Tw, T1A, TD, T1t, Tx, T1z, TC, T1u, TJ, T15, TQ, TY, TK, T14, TP;	       E TZ;	       {		    E T3, Tc, T6, Tb;		    T1 = W[0];		    T4 = W[1];		    T2 = W[2];		    T5 = W[3];		    T3 = T1 * T2;		    Tc = T4 * T2;		    T6 = T4 * T5;		    Tb = T1 * T5;		    T7 = T3 + T6;		    T1b = T3 - T6;		    T1d = Tb + Tc;		    Td = Tb - Tc;		    Ti = W[4];		    Tw = T1 * Ti;		    T1A = T5 * Ti;		    TD = T4 * Ti;		    T1t = T2 * Ti;		    Tk = W[5];		    Tx = T4 * Tk;		    T1z = T2 * Tk;		    TC = T1 * Tk;		    T1u = T5 * Tk;		    Tj = W[6];		    TJ = T1 * Tj;		    T15 = T5 * Tj;		    TQ = T4 * Tj;		    TY = T2 * Tj;		    Tl = W[7];		    TK = T4 * Tl;		    T14 = T2 * Tl;		    TP = T1 * Tl;		    TZ = T5 * Tl;	       }	       TL = TJ + TK;	       TR = TP - TQ;	       T2h = TJ - TK;	       T2O = T14 - T15;	       T16 = T14 + T15;	       T2l = TP + TQ;	       T10 = TY - TZ;	       T2K = TY + TZ;	       Tm = FMA(Ti, Tj, Tk * Tl);	       Tq = FNMS(Tk, Tj, Ti * Tl);	       {		    E T3q, T3r, T3u, T3v;		    T3q = T7 * Tj;		    T3r = Td * Tl;		    T3s = T3q + T3r;		    T3K = T3q - T3r;		    T3u = T7 * Tl;		    T3v = Td * Tj;		    T3w = T3u - T3v;		    T3M = T3u + T3v;	       }	       {		    E T4c, T4d, T4g, T4h;		    T4c = T1b * Tj;		    T4d = T1d * Tl;		    T4e = T4c - T4d;		    T4u = T4c + T4d;		    T4g = T1b * Tl;		    T4h = T1d * Tj;		    T4i = T4g + T4h;		    T4w = T4g - T4h;		    Ty = Tw - Tx;		    TE = TC + TD;		    T3h = FMA(Ty, Tj, TE * Tl);		    T3j = FNMS(TE, Tj, Ty * Tl);	       }	       T2q = T1t - T1u;	       T2u = T1z + T1A;	       T4l = FMA(T2q, Tj, T2u * Tl);	       T4n = FNMS(T2u, Tj, T2q * Tl);	       T1v = T1t + T1u;	       T1B = T1z - T1A;	       T3E = FMA(T1v, Tj, T1B * Tl);	       T3G = FNMS(T1B, Tj, T1v * Tl);	       T2B = Tw + Tx;	       T2F = TC - TD;	       T3Y = FMA(T2B, Tj, T2F * Tl);	       T40 = FNMS(T2F, Tj, T2B * Tl);	       {		    E T1c, T1e, T1g, T1h;		    T1c = T1b * Ti;		    T1e = T1d * Tk;		    T1f = T1c - T1e;		    T1G = T1c + T1e;		    T1g = T1b * Tk;		    T1h = T1d * Ti;		    T1i = T1g + T1h;		    T1H = T1g - T1h;	       }	       T1j = FMA(T1f, Tj, T1i * Tl);	       T1M = FNMS(T1H, Tj, T1G * Tl);	       T1n = FNMS(T1i, Tj, T1f * Tl);	       T1I = FMA(T1G, Tj, T1H * Tl);	       {		    E T21, T22, T24, T25;		    T21 = T7 * Ti;		    T22 = Td * Tk;		    T23 = T21 + T22;		    T2U = T21 - T22;		    T24 = T7 * Tk;		    T25 = Td * Ti;		    T26 = T24 - T25;		    T2V = T24 + T25;	       }	       T27 = FMA(T23, Tj, T26 * Tl);	       T30 = FNMS(T2V, Tj, T2U * Tl);	       T2b = FNMS(T26, Tj, T23 * Tl);	       T2W = FMA(T2U, Tj, T2V * Tl);	  }	  {	       E T38, T7l, T7S, T8Y, T7Z, T91, T3A, T6k, T4F, T83, T5C, T6n, T2T, T84, T4I;	       E T7m, T2g, T4M, T4P, T2z, T3T, T6m, T7O, T7V, T7j, T87, T5v, T6j, T7L, T7U;	       E T7g, T86, Tv, TW, T61, T4U, T4X, T62, T4b, T6c, T7v, T7C, T5g, T6f, T74;	       E T8G, T7s, T7B, T71, T8F, T1s, T1R, T65, T51, T54, T64, T4A, T6g, T7G, T8U;	       E T5n, T6d, T7b, T8J, T7z, T8R, T78, T8I;	       {		    E T2E, T2I, T3p, T5w, T37, T4D, T3g, T5A, T2N, T2R, T3y, T5x, T2Z, T33, T3l;		    E T5z;		    {			 E T2C, T2D, T3o, T2G, T2H, T3n;			 T2C = Ip[WS(rs, 4)];			 T2D = Im[WS(rs, 4)];			 T3o = T2C + T2D;			 T2G = Rp[WS(rs, 4)];			 T2H = Rm[WS(rs, 4)];			 T3n = T2G - T2H;			 T2E = T2C - T2D;			 T2I = T2G + T2H;			 T3p = FMA(Ti, T3n, Tk * T3o);			 T5w = FNMS(Tk, T3n, Ti * T3o);		    }		    {			 E T35, T36, T3f, T3c, T3d, T3e;			 T35 = Ip[0];			 T36 = Im[0];			 T3f = T35 + T36;			 T3c = Rm[0];			 T3d = Rp[0];			 T3e = T3c - T3d;			 T37 = T35 - T36;			 T4D = T3d + T3c;			 T3g = FNMS(T4, T3f, T1 * T3e);			 T5A = FMA(T4, T3e, T1 * T3f);		    }		    {			 E T2L, T2M, T3x, T2P, T2Q, T3t;			 T2L = Ip[WS(rs, 12)];			 T2M = Im[WS(rs, 12)];			 T3x = T2L + T2M;			 T2P = Rp[WS(rs, 12)];			 T2Q = Rm[WS(rs, 12)];			 T3t = T2P - T2Q;			 T2N = T2L - T2M;			 T2R = T2P + T2Q;			 T3y = FMA(T3s, T3t, T3w * T3x);			 T5x = FNMS(T3w, T3t, T3s * T3x);		    }		    {			 E T2X, T2Y, T3k, T31, T32, T3i;			 T2X = Ip[WS(rs, 8)];			 T2Y = Im[WS(rs, 8)];			 T3k = T2X + T2Y;			 T31 = Rp[WS(rs, 8)];			 T32 = Rm[WS(rs, 8)];			 T3i = T31 - T32;			 T2Z = T2X - T2Y;			 T33 = T31 + T32;			 T3l = FMA(T3h, T3i, T3j * T3k);			 T5z = FNMS(T3j, T3i, T3h * T3k);		    }		    {			 E T34, T7Q, T7R, T4E, T5y, T5B;			 T34 = FNMS(T30, T33, T2W * T2Z);			 T38 = T34 + T37;			 T7l = T37 - T34;			 T7Q = T3l + T3g;			 T7R = T5w - T5x;			 T7S = T7Q - T7R;			 T8Y = T7R + T7Q;			 {			      E T7X, T7Y, T3m, T3z;			      T7X = T3y - T3p;			      T7Y = T5A - T5z;			      T7Z = T7X + T7Y;			      T91 = T7Y - T7X;			      T3m = T3g - T3l;			      T3z = T3p + T3y;			      T3A = T3m - T3z;			      T6k = T3z + T3m;			 }			 T4E = FMA(T2W, T33, T30 * T2Z);			 T4F = T4D + T4E;			 T83 = T4D - T4E;			 T5y = T5w + T5x;			 T5B = T5z + T5A;			 T5C = T5y + T5B;			 T6n = T5B - T5y;			 {			      E T2J, T2S, T4G, T4H;			      T2J = FNMS(T2F, T2I, T2B * T2E);			      T2S = FNMS(T2O, T2R, T2K * T2N);			      T2T = T2J + T2S;			      T84 = T2J - T2S;			      T4G = FMA(T2B, T2I, T2F * T2E);			      T4H = FMA(T2K, T2R, T2O * T2N);			      T4I = T4G + T4H;			      T7m = T4G - T4H;			 }		    }	       }	       {		    E T20, T5p, T3D, T4K, T2y, T5t, T3R, T4O, T2f, T5q, T3I, T4L, T2p, T5s, T3O;		    E T4N;		    {			 E T1W, T3C, T1Z, T3B;			 {			      E T1U, T1V, T1X, T1Y;			      T1U = Ip[WS(rs, 2)];			      T1V = Im[WS(rs, 2)];			      T1W = T1U - T1V;			      T3C = T1U + T1V;			      T1X = Rp[WS(rs, 2)];			      T1Y = Rm[WS(rs, 2)];			      T1Z = T1X + T1Y;			      T3B = T1X - T1Y;			 }			 T20 = FNMS(T1d, T1Z, T1b * T1W);			 T5p = FNMS(T1H, T3B, T1G * T3C);			 T3D = FMA(T1G, T3B, T1H * T3C);			 T4K = FMA(T1b, T1Z, T1d * T1W);		    }		    {			 E T2t, T3Q, T2x, T3P;			 {			      E T2r, T2s, T2v, T2w;			      T2r = Ip[WS(rs, 6)];			      T2s = Im[WS(rs, 6)];			      T2t = T2r - T2s;			      T3Q = T2r + T2s;			      T2v = Rp[WS(rs, 6)];			      T2w = Rm[WS(rs, 6)];			      T2x = T2v + T2w;			      T3P = T2v - T2w;			 }			 T2y = FNMS(T2u, T2x, T2q * T2t);			 T5t = FNMS(T1i, T3P, T1f * T3Q);			 T3R = FMA(T1f, T3P, T1i * T3Q);			 T4O = FMA(T2q, T2x, T2u * T2t);		    }		    {			 E T2a, T3H, T2e, T3F;			 {			      E T28, T29, T2c, T2d;			      T28 = Ip[WS(rs, 10)];			      T29 = Im[WS(rs, 10)];			      T2a = T28 - T29;			      T3H = T28 + T29;			      T2c = Rp[WS(rs, 10)];			      T2d = Rm[WS(rs, 10)];			      T2e = T2c + T2d;			      T3F = T2c - T2d;			 }			 T2f = FNMS(T2b, T2e, T27 * T2a);			 T5q = FNMS(T3G, T3F, T3E * T3H);			 T3I = FMA(T3E, T3F, T3G * T3H);			 T4L = FMA(T27, T2e, T2b * T2a);		    }		    {			 E T2k, T3N, T2o, T3L;			 {			      E T2i, T2j, T2m, T2n;			      T2i = Ip[WS(rs, 14)];			      T2j = Im[WS(rs, 14)];			      T2k = T2i - T2j;			      T3N = T2i + T2j;			      T2m = Rp[WS(rs, 14)];			      T2n = Rm[WS(rs, 14)];			      T2o = T2m + T2n;			      T3L = T2m - T2n;			 }			 T2p = FNMS(T2l, T2o, T2h * T2k);			 T5s = FNMS(T3M, T3L, T3K * T3N);			 T3O = FMA(T3K, T3L, T3M * T3N);			 T4N = FMA(T2h, T2o, T2l * T2k);		    }		    {			 E T3J, T3S, T5r, T5u;			 T2g = T20 + T2f;			 T4M = T4K + T4L;			 T4P = T4N + T4O;			 T2z = T2p + T2y;			 T3J = T3D + T3I;			 T3S = T3O + T3R;			 T3T = T3J + T3S;			 T6m = T3S - T3J;			 {			      E T7M, T7N, T7h, T7i;			      T7M = T5s - T5t;			      T7N = T3R - T3O;			      T7O = T7M + T7N;			      T7V = T7M - T7N;			      T7h = T4N - T4O;			      T7i = T2p - T2y;			      T7j = T7h + T7i;			      T87 = T7h - T7i;			 }			 T5r = T5p + T5q;			 T5u = T5s + T5t;			 T5v = T5r + T5u;			 T6j = T5u - T5r;			 {			      E T7J, T7K, T7e, T7f;			      T7J = T3I - T3D;			      T7K = T5p - T5q;			      T7L = T7J - T7K;			      T7U = T7K + T7J;			      T7e = T20 - T2f;			      T7f = T4K - T4L;			      T7g = T7e - T7f;			      T86 = T7f + T7e;			 }		    }	       }	       {		    E Th, T5a, T3X, T4S, TV, T5e, T49, T4W, Tu, T5b, T42, T4T, TI, T5d, T46;		    E T4V;		    {			 E Ta, T3W, Tg, T3V;			 {			      E T8, T9, Te, Tf;			      T8 = Ip[WS(rs, 1)];			      T9 = Im[WS(rs, 1)];			      Ta = T8 - T9;			      T3W = T8 + T9;			      Te = Rp[WS(rs, 1)];			      Tf = Rm[WS(rs, 1)];			      Tg = Te + Tf;			      T3V = Te - Tf;			 }			 Th = FNMS(Td, Tg, T7 * Ta);			 T5a = FNMS(T5, T3V, T2 * T3W);			 T3X = FMA(T2, T3V, T5 * T3W);			 T4S = FMA(T7, Tg, Td * Ta);		    }		    {			 E TO, T48, TU, T47;			 {			      E TM, TN, TS, TT;			      TM = Ip[WS(rs, 13)];			      TN = Im[WS(rs, 13)];			      TO = TM - TN;			      T48 = TM + TN;			      TS = Rp[WS(rs, 13)];			      TT = Rm[WS(rs, 13)];			      TU = TS + TT;			      T47 = TS - TT;			 }			 TV = FNMS(TR, TU, TL * TO);			 T5e = FNMS(Tl, T47, Tj * T48);			 T49 = FMA(Tj, T47, Tl * T48);			 T4W = FMA(TL, TU, TR * TO);		    }		    {			 E Tp, T41, Tt, T3Z;			 {			      E Tn, To, Tr, Ts;			      Tn = Ip[WS(rs, 9)];			      To = Im[WS(rs, 9)];			      Tp = Tn - To;			      T41 = Tn + To;			      Tr = Rp[WS(rs, 9)];			      Ts = Rm[WS(rs, 9)];			      Tt = Tr + Ts;			      T3Z = Tr - Ts;			 }			 Tu = FNMS(Tq, Tt, Tm * Tp);			 T5b = FNMS(T40, T3Z, T3Y * T41);			 T42 = FMA(T3Y, T3Z, T40 * T41);			 T4T = FMA(Tm, Tt, Tq * Tp);		    }		    {			 E TB, T45, TH, T44;			 {			      E Tz, TA, TF, TG;			      Tz = Ip[WS(rs, 5)];			      TA = Im[WS(rs, 5)];			      TB = Tz - TA;			      T45 = Tz + TA;			      TF = Rp[WS(rs, 5)];			      TG = Rm[WS(rs, 5)];			      TH = TF + TG;			      T44 = TF - TG;			 }			 TI = FNMS(TE, TH, Ty * TB);			 T5d = FNMS(T2V, T44, T2U * T45);			 T46 = FMA(T2U, T44, T2V * T45);			 T4V = FMA(Ty, TH, TE * TB);		    }		    Tv = Th + Tu;		    TW = TI + TV;		    T61 = Tv - TW;		    T4U = T4S + T4T;		    T4X = T4V + T4W;		    T62 = T4U - T4X;		    {			 E T43, T4a, T7t, T7u;			 T43 = T3X + T42;			 T4a = T46 + T49;			 T4b = T43 + T4a;			 T6c = T4a - T43;			 T7t = T5e - T5d;			 T7u = T46 - T49;			 T7v = T7t + T7u;			 T7C = T7t - T7u;		    }		    {			 E T5c, T5f, T72, T73;			 T5c = T5a + T5b;			 T5f = T5d + T5e;			 T5g = T5c + T5f;			 T6f = T5f - T5c;			 T72 = T4S - T4T;			 T73 = TI - TV;			 T74 = T72 + T73;			 T8G = T72 - T73;		    }		    {			 E T7q, T7r, T6Z, T70;			 T7q = T42 - T3X;			 T7r = T5a - T5b;			 T7s = T7q - T7r;			 T7B = T7r + T7q;			 T6Z = Th - Tu;			 T70 = T4V - T4W;			 T71 = T6Z - T70;			 T8F = T6Z + T70;		    }	       }	       {		    E T1a, T5h, T4k, T4Z, T1Q, T5l, T4y, T53, T1r, T5i, T4p, T50, T1F, T5k, T4t;		    E T52;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -