⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cf2_20.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:03:04 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2c -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hc2cf2_20 -include hc2cf.h *//* * This function contains 276 FP additions, 198 FP multiplications, * (or, 136 additions, 58 multiplications, 140 fused multiply/add), * 142 stack variables, 4 constants, and 80 memory accesses */#include "hc2cf.h"static void hc2cf2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     INT m;     for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) {	  E T59, T5i, T5k, T5e, T5c, T5d, T5j, T5f;	  {	       E T2, Th, Tf, T6, T5, Tl, T1p, T1n, Ti, T3, Tt, Tv, T24, T1f, T1D;	       E Tb, T1P, Tm, T21, T1b, T7, T1A, Tw, T1H, T13, TA, T1L, T17, T1S, Tq;	       E T1o, T2g, T1t, T2c, TO, TK;	       {		    E T1e, Ta, Tk, Tg;		    T2 = W[0];		    Th = W[3];		    Tf = W[2];		    T6 = W[5];		    T5 = W[1];		    Tk = T2 * Th;		    Tg = T2 * Tf;		    T1e = Tf * T6;		    Ta = T2 * T6;		    Tl = FMA(T5, Tf, Tk);		    T1p = FNMS(T5, Tf, Tk);		    T1n = FMA(T5, Th, Tg);		    Ti = FNMS(T5, Th, Tg);		    T3 = W[4];		    Tt = W[6];		    Tv = W[7];		    {			 E Tp, Tj, TN, TJ;			 Tp = Ti * T6;			 T24 = FMA(Th, T3, T1e);			 T1f = FNMS(Th, T3, T1e);			 T1D = FNMS(T5, T3, Ta);			 Tb = FMA(T5, T3, Ta);			 Tj = Ti * T3;			 {			      E T1a, T4, Tu, T1G;			      T1a = Tf * T3;			      T4 = T2 * T3;			      Tu = Ti * Tt;			      T1G = T2 * Tt;			      {				   E T12, Tz, T1K, T16;				   T12 = Tf * Tt;				   Tz = Ti * Tv;				   T1K = T2 * Tv;				   T16 = Tf * Tv;				   T1P = FNMS(Tl, T6, Tj);				   Tm = FMA(Tl, T6, Tj);				   T21 = FNMS(Th, T6, T1a);				   T1b = FMA(Th, T6, T1a);				   T7 = FNMS(T5, T6, T4);				   T1A = FMA(T5, T6, T4);				   Tw = FMA(Tl, Tv, Tu);				   T1H = FMA(T5, Tv, T1G);				   T13 = FMA(Th, Tv, T12);				   TA = FNMS(Tl, Tt, Tz);				   T1L = FNMS(T5, Tt, T1K);				   T17 = FNMS(Th, Tt, T16);				   T1S = FMA(Tl, T3, Tp);				   Tq = FNMS(Tl, T3, Tp);			      }			 }			 T1o = T1n * T3;			 T2g = T1n * Tv;			 TN = Tm * Tv;			 TJ = Tm * Tt;			 T1t = T1n * T6;			 T2c = T1n * Tt;			 TO = FNMS(Tq, Tt, TN);			 TK = FMA(Tq, Tv, TJ);		    }	       }	       {		    E Te, T2C, T4L, T57, T58, TD, T2H, T4H, T3J, T3Z, T11, T2v, T2P, T3P, T4d;		    E T4z, T3n, T43, T2r, T2z, T3b, T3T, T4n, T4v, T3u, T42, T20, T2y, T34, T3S;		    E T4k, T4w, T1c, T19, T1d, T3y, T1w, T2U, T1g, T1j, T1l;		    {			 E T2d, T2h, T2k, T1q, T1u, T2n, TL, TI, TM, T3F, TZ, T2N, TP, TS, TU;			 {			      E T1, T4K, T8, T9, Tc;			      T1 = Rp[0];			      T4K = Rm[0];			      T8 = Rp[WS(rs, 5)];			      T2d = FMA(T1p, Tv, T2c);			      T2h = FNMS(T1p, Tt, T2g);			      T2k = FMA(T1p, T6, T1o);			      T1q = FNMS(T1p, T6, T1o);			      T1u = FMA(T1p, T3, T1t);			      T2n = FNMS(T1p, T3, T1t);			      T9 = T7 * T8;			      Tc = Rm[WS(rs, 5)];			      {				   E Tx, Ts, T2F, TC, T2E;				   {					E Tn, Tr, To, T2D, T4J, Ty, TB, Td, T4I;					Tn = Ip[WS(rs, 2)];					Tr = Im[WS(rs, 2)];					Tx = Ip[WS(rs, 7)];					Td = FMA(Tb, Tc, T9);					T4I = T7 * Tc;					To = Tm * Tn;					T2D = Tm * Tr;					Te = T1 + Td;					T2C = T1 - Td;					T4J = FNMS(Tb, T8, T4I);					Ty = Tw * Tx;					TB = Im[WS(rs, 7)];					Ts = FMA(Tq, Tr, To);					T4L = T4J + T4K;					T57 = T4K - T4J;					T2F = Tw * TB;					TC = FMA(TA, TB, Ty);					T2E = FNMS(Tq, Tn, T2D);				   }				   {					E TF, TG, TH, TW, TY, T2G, T3E, TX, T2M;					TF = Rp[WS(rs, 2)];					T2G = FNMS(TA, Tx, T2F);					T58 = Ts - TC;					TD = Ts + TC;					TG = Ti * TF;					T2H = T2E - T2G;					T4H = T2E + T2G;					TH = Rm[WS(rs, 2)];					TW = Ip[WS(rs, 9)];					TY = Im[WS(rs, 9)];					TL = Rp[WS(rs, 7)];					TI = FMA(Tl, TH, TG);					T3E = Ti * TH;					TX = Tt * TW;					T2M = Tt * TY;					TM = TK * TL;					T3F = FNMS(Tl, TF, T3E);					TZ = FMA(Tv, TY, TX);					T2N = FNMS(Tv, TW, T2M);					TP = Rm[WS(rs, 7)];					TS = Ip[WS(rs, 4)];					TU = Im[WS(rs, 4)];				   }			      }			 }			 {			      E T27, T26, T28, T3j, T2p, T39, T29, T2e, T2i;			      {				   E T22, T23, T25, T2l, T2o, T3i, T2m, T38;				   {					E TR, T2J, T3H, TV, T2L, T4b, T3I;					T22 = Rp[WS(rs, 6)];					{					     E TQ, T3G, TT, T2K;					     TQ = FMA(TO, TP, TM);					     T3G = TK * TP;					     TT = T3 * TS;					     T2K = T3 * TU;					     TR = TI + TQ;					     T2J = TI - TQ;					     T3H = FNMS(TO, TL, T3G);					     TV = FMA(T6, TU, TT);					     T2L = FNMS(T6, TS, T2K);					     T23 = T21 * T22;					}					T4b = T3F + T3H;					T3I = T3F - T3H;					{					     E T10, T3D, T4c, T2O;					     T10 = TV + TZ;					     T3D = TZ - TV;					     T4c = T2L + T2N;					     T2O = T2L - T2N;					     T3J = T3D - T3I;					     T3Z = T3I + T3D;					     T11 = TR - T10;					     T2v = TR + T10;					     T2P = T2J - T2O;					     T3P = T2J + T2O;					     T4d = T4b + T4c;					     T4z = T4c - T4b;					     T25 = Rm[WS(rs, 6)];					}				   }				   T2l = Ip[WS(rs, 3)];				   T2o = Im[WS(rs, 3)];				   T27 = Rp[WS(rs, 1)];				   T26 = FMA(T24, T25, T23);				   T3i = T21 * T25;				   T2m = T2k * T2l;				   T38 = T2k * T2o;				   T28 = T1n * T27;				   T3j = FNMS(T24, T22, T3i);				   T2p = FMA(T2n, T2o, T2m);				   T39 = FNMS(T2n, T2l, T38);				   T29 = Rm[WS(rs, 1)];				   T2e = Ip[WS(rs, 8)];				   T2i = Im[WS(rs, 8)];			      }			      {				   E T1I, T1F, T1J, T3q, T1Y, T32, T1M, T1Q, T1T;				   {					E T1B, T1C, T1E, T1V, T1X, T3p, T1W, T31;					{					     E T2b, T35, T3l, T2j, T37, T4l, T3m;					     T1B = Rp[WS(rs, 4)];					     {						  E T2a, T3k, T2f, T36;						  T2a = FMA(T1p, T29, T28);						  T3k = T1n * T29;						  T2f = T2d * T2e;						  T36 = T2d * T2i;						  T2b = T26 + T2a;						  T35 = T26 - T2a;						  T3l = FNMS(T1p, T27, T3k);						  T2j = FMA(T2h, T2i, T2f);						  T37 = FNMS(T2h, T2e, T36);						  T1C = T1A * T1B;					     }					     T4l = T3j + T3l;					     T3m = T3j - T3l;					     {						  E T2q, T3h, T4m, T3a;						  T2q = T2j + T2p;						  T3h = T2p - T2j;						  T4m = T37 + T39;						  T3a = T37 - T39;						  T3n = T3h - T3m;						  T43 = T3m + T3h;						  T2r = T2b - T2q;						  T2z = T2b + T2q;						  T3b = T35 - T3a;						  T3T = T35 + T3a;						  T4n = T4l + T4m;						  T4v = T4m - T4l;						  T1E = Rm[WS(rs, 4)];					     }					}					T1V = Ip[WS(rs, 1)];					T1X = Im[WS(rs, 1)];					T1I = Rp[WS(rs, 9)];					T1F = FMA(T1D, T1E, T1C);					T3p = T1A * T1E;					T1W = Tf * T1V;					T31 = Tf * T1X;					T1J = T1H * T1I;					T3q = FNMS(T1D, T1B, T3p);					T1Y = FMA(Th, T1X, T1W);					T32 = FNMS(Th, T1V, T31);					T1M = Rm[WS(rs, 9)];					T1Q = Ip[WS(rs, 6)];					T1T = Im[WS(rs, 6)];				   }				   {					E T14, T15, T18, T1r, T1v, T3x, T1s, T2T;					{					     E T1O, T2Y, T3s, T1U, T30, T4i, T3t;					     T14 = Rp[WS(rs, 8)];					     {						  E T1N, T3r, T1R, T2Z;						  T1N = FMA(T1L, T1M, T1J);						  T3r = T1H * T1M;						  T1R = T1P * T1Q;						  T2Z = T1P * T1T;						  T1O = T1F + T1N;						  T2Y = T1F - T1N;						  T3s = FNMS(T1L, T1I, T3r);						  T1U = FMA(T1S, T1T, T1R);						  T30 = FNMS(T1S, T1Q, T2Z);						  T15 = T13 * T14;					     }					     T4i = T3q + T3s;					     T3t = T3q - T3s;					     {						  E T1Z, T3o, T4j, T33;						  T1Z = T1U + T1Y;						  T3o = T1Y - T1U;						  T4j = T30 + T32;						  T33 = T30 - T32;						  T3u = T3o - T3t;						  T42 = T3t + T3o;						  T20 = T1O - T1Z;						  T2y = T1O + T1Z;						  T34 = T2Y - T33;						  T3S = T2Y + T33;						  T4k = T4i + T4j;						  T4w = T4j - T4i;						  T18 = Rm[WS(rs, 8)];					     }					}					T1r = Ip[WS(rs, 5)];					T1v = Im[WS(rs, 5)];					T1c = Rp[WS(rs, 3)];					T19 = FMA(T17, T18, T15);					T3x = T13 * T18;					T1s = T1q * T1r;					T2T = T1q * T1v;					T1d = T1b * T1c;					T3y = FNMS(T17, T14, T3x);					T1w = FMA(T1u, T1v, T1s);					T2U = FNMS(T1u, T1r, T2T);					T1g = Rm[WS(rs, 3)];					T1j = Ip[0];					T1l = Im[0];				   }			      }			 }		    }		    {			 E T3C, T40, T2W, T3Q, T4M, T4E, T4F, T4U, T4S;			 {			      E T4W, T2u, T2w, T4g, T4V, T4D, T4B, T54, T56, T4Y, T4u, T4C;			      {				   E T4x, TE, T53, T1z, T2s, T52, T4A, T4t, T4s, T2t;				   {					E T1i, T2Q, T3A, T1m, T2S;					T4x = T4v - T4w;					T4W = T4w + T4v;					{					     E T1h, T3z, T1k, T2R;					     T1h = FMA(T1f, T1g, T1d);					     T3z = T1b * T1g;					     T1k = T2 * T1j;					     T2R = T2 * T1l;					     T1i = T19 + T1h;					     T2Q = T19 - T1h;					     T3A = FNMS(T1f, T1c, T3z);					     T1m = FMA(T5, T1l, T1k);					     T2S = FNMS(T5, T1j, T2R);					}					TE = Te - TD;					T2u = Te + TD;					{					     E T4e, T3B, T1x, T3w;					     T4e = T3y + T3A;					     T3B = T3y - T3A;					     T1x = T1m + T1w;					     T3w = T1w - T1m;					     {						  E T4f, T2V, T1y, T4y;						  T4f = T2S + T2U;						  T2V = T2S - T2U;						  T3C = T3w - T3B;						  T40 = T3B + T3w;						  T1y = T1i - T1x;						  T2w = T1i + T1x;						  T2W = T2Q - T2V;						  T3Q = T2Q + T2V;						  T4g = T4e + T4f;						  T4y = T4f - T4e;						  T53 = T1y - T11;						  T1z = T11 + T1y;						  T2s = T20 + T2r;						  T52 = T20 - T2r;						  T4V = T4z + T4y;						  T4A = T4y - T4z;					     }					}				   }				   T4t = T1z - T2s;				   T2t = T1z + T2s;				   T4D = FMA(KP618033988, T4x, T4A);				   T4B = FNMS(KP618033988, T4A, T4x);				   T54 = FMA(KP618033988, T53, T52);				   T56 = FNMS(KP618033988, T52, T53);				   Rm[WS(rs, 9)] = TE + T2t;				   T4s = FNMS(KP250000000, T2t, TE);				   T4Y = T4L - T4H;				   T4M = T4H + T4L;				   T4u = FNMS(KP559016994, T4t, T4s);				   T4C = FMA(KP559016994, T4t, T4s);			      }			      {				   E T2x, T4Q, T4p, T4r, T4R, T2A, T51, T55;				   {					E T4h, T50, T4X, T4o, T4Z;					T4E = T4d + T4g;					T4h = T4d - T4g;					Rm[WS(rs, 1)] = FMA(KP951056516, T4B, T4u);					Rp[WS(rs, 2)] = FNMS(KP951056516, T4B, T4u);					Rp[WS(rs, 6)] = FMA(KP951056516, T4D, T4C);					Rm[WS(rs, 5)] = FNMS(KP951056516, T4D, T4C);					T50 = T4W - T4V;					T4X = T4V + T4W;					T4o = T4k - T4n;					T4F = T4k + T4n;					T2x = T2v + T2w;					T4Q = T2v - T2w;					Im[WS(rs, 9)] = T4X - T4Y;					T4Z = FMA(KP250000000, T4X, T4Y);					T4p = FMA(KP618033988, T4o, T4h);					T4r = FNMS(KP618033988, T4h, T4o);					T4R = T2z - T2y;					T2A = T2y + T2z;					T51 = FNMS(KP559016994, T50, T4Z);					T55 = FMA(KP559016994, T50, T4Z);				   }				   {					E T49, T48, T2B, T4a, T4q;					T2B = T2x + T2A;					T49 = T2x - T2A;					Ip[WS(rs, 2)] = FMA(KP951056516, T54, T51);					Im[WS(rs, 1)] = FMS(KP951056516, T54, T51);					Ip[WS(rs, 6)] = FMA(KP951056516, T56, T55);					Im[WS(rs, 5)] = FMS(KP951056516, T56, T55);					Rp[0] = T2u + T2B;					T48 = FNMS(KP250000000, T2B, T2u);					T4a = FMA(KP559016994, T49, T48);					T4q = FNMS(KP559016994, T49, T48);					T4U = FMA(KP618033988, T4Q, T4R);					T4S = FNMS(KP618033988, T4R, T4Q);					Rm[WS(rs, 3)] = FMA(KP951056516, T4p, T4a);					Rp[WS(rs, 4)] = FNMS(KP951056516, T4p, T4a);					Rp[WS(rs, 8)] = FMA(KP951056516, T4r, T4q);					Rm[WS(rs, 7)] = FNMS(KP951056516, T4r, T4q);				   }			      }			 }			 {			      E T3O, T5u, T5w, T5o, T5q, T5n;			      {				   E T5m, T5l, T2I, T4O, T3N, T3L, T2X, T5s, T4N, T5t, T3c, T3v, T3K, T4G;				   T5m = T3u + T3n;				   T3v = T3n - T3u;				   T3K = T3C - T3J;				   T5l = T3J + T3C;				   T3O = T2C + T2H;				   T2I = T2C - T2H;				   T4O = T4E - T4F;				   T4G = T4E + T4F;				   T3N = FMA(KP618033988, T3v, T3K);				   T3L = FNMS(KP618033988, T3K, T3v);				   T2X = T2P + T2W;				   T5s = T2P - T2W;				   Ip[0] = T4G + T4M;				   T4N = FNMS(KP250000000, T4G, T4M);				   T5t = T34 - T3b;				   T3c = T34 + T3b;				   {					E T3f, T3e, T4P, T4T, T3d, T3M, T3g;					T4P = FMA(KP559016994, T4O, T4N);					T4T = FNMS(KP559016994, T4O, T4N);					T3f = T2X - T3c;					T3d = T2X + T3c;					Ip[WS(rs, 4)] = FMA(KP951056516, T4S, T4P);					Im[WS(rs, 3)] = FMS(KP951056516, T4S, T4P);					Ip[WS(rs, 8)] = FMA(KP951056516, T4U, T4T);					Im[WS(rs, 7)] = FMS(KP951056516, T4U, T4T);					Rm[WS(rs, 4)] = T2I + T3d;					T3e = FNMS(KP250000000, T3d, T2I);					T5u = FMA(KP618033988, T5t, T5s);					T5w = FNMS(KP618033988, T5s, T5t);					T5o = T58 + T57;					T59 = T57 - T58;					T3M = FMA(KP559016994, T3f, T3e);					T3g = FNMS(KP559016994, T3f, T3e);					Rp[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g);					Rp[WS(rs, 3)] = FMA(KP951056516, T3L, T3g);					Rm[0] = FNMS(KP951056516, T3N, T3M);					Rm[WS(rs, 8)] = FMA(KP951056516, T3N, T3M);					T5q = T5l - T5m;					T5n = T5l + T5m;				   }			      }			      {				   E T5a, T5b, T47, T45, T5h, T5g, T3V, T3X, T41, T44, T5p, T3W, T46, T3Y;				   T5a = T3Z + T40;				   T41 = T3Z - T40;				   T44 = T42 - T43;				   T5b = T42 + T43;				   Im[WS(rs, 4)] = T5n - T5o;				   T5p = FMA(KP250000000, T5n, T5o);				   T47 = FNMS(KP618033988, T41, T44);				   T45 = FMA(KP618033988, T44, T41);				   {					E T5r, T5v, T3R, T3U;					T5r = FNMS(KP559016994, T5q, T5p);					T5v = FMA(KP559016994, T5q, T5p);					T3R = T3P + T3Q;					T5h = T3P - T3Q;					T5g = T3S - T3T;					T3U = T3S + T3T;					Im[0] = -(FMA(KP951056516, T5u, T5r));					Im[WS(rs, 8)] = FMS(KP951056516, T5u, T5r);					Ip[WS(rs, 7)] = FMA(KP951056516, T5w, T5v);					Ip[WS(rs, 3)] = FNMS(KP951056516, T5w, T5v);					T3V = T3R + T3U;					T3X = T3R - T3U;				   }				   Rp[WS(rs, 5)] = T3O + T3V;				   T3W = FNMS(KP250000000, T3V, T3O);				   T5i = FNMS(KP618033988, T5h, T5g);				   T5k = FMA(KP618033988, T5g, T5h);				   T46 = FNMS(KP559016994, T3X, T3W);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -