📄 hf_32.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:56:44 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -dit -name hf_32 -include hf.h *//* * This function contains 434 FP additions, 260 FP multiplications, * (or, 236 additions, 62 multiplications, 198 fused multiply/add), * 135 stack variables, 7 constants, and 128 memory accesses */#include "hf.h"static void hf_32(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP414213562, +0.414213562373095048801688724209698078569671875); DK(KP707106781, +0.707106781186547524400844362104849039284835938); INT m; for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 62, MAKE_VOLATILE_STRIDE(rs)) { E T6D, T6A; { E T8y, T87, T8, T3w, T83, T3B, T8x, Tl, T6G, Tz, T3J, T5T, T6F, TM, T3Q; E T5U, T46, T5X, T7E, T6M, T5Y, T3Z, T6J, T1f, T7D, T6R, T61, T4e, T6O, T1G; E T60, T4l, T54, T6c, T7d, T7N, T32, T76, T6f, T5r, T4v, T65, T72, T7I, T29; E T6V, T68, T4S, T5t, T5b, T7O, T79, T7e, T3t, T5s, T5i, T4H, T2y, T4B, T6X; E T2m, T4w, T4F, T2s; { E T44, T1d, T3X, T6K, T11, T40, T42, T17, T5h, T5c; { E Ta, Td, Tg, T3x, Tb, Tj, Tf, Tc, Ti; { E T1, T86, T3, T6, T2, T5; T1 = cr[0]; T86 = ci[0]; T3 = cr[WS(rs, 16)]; T6 = ci[WS(rs, 16)]; T2 = W[30]; T5 = W[31]; { E T84, T4, T9, T85, T7; Ta = cr[WS(rs, 8)]; Td = ci[WS(rs, 8)]; T84 = T2 * T6; T4 = T2 * T3; T9 = W[14]; Tg = cr[WS(rs, 24)]; T85 = FNMS(T5, T3, T84); T7 = FMA(T5, T6, T4); T3x = T9 * Td; Tb = T9 * Ta; T8y = T86 - T85; T87 = T85 + T86; T8 = T1 + T7; T3w = T1 - T7; Tj = ci[WS(rs, 24)]; Tf = W[46]; } Tc = W[15]; Ti = W[47]; } { E Tu, Tx, T3F, Ts, Tw, T3G, Tv; { E To, Tr, Tp, T3E, Tq, Tt; { E T3y, Te, T3A, Tk, T3z, Th, Tn; To = cr[WS(rs, 4)]; T3z = Tf * Tj; Th = Tf * Tg; T3y = FNMS(Tc, Ta, T3x); Te = FMA(Tc, Td, Tb); T3A = FNMS(Ti, Tg, T3z); Tk = FMA(Ti, Tj, Th); Tr = ci[WS(rs, 4)]; Tn = W[6]; T83 = T3y + T3A; T3B = T3y - T3A; T8x = Te - Tk; Tl = Te + Tk; Tp = Tn * To; T3E = Tn * Tr; } Tq = W[7]; Tu = cr[WS(rs, 20)]; Tx = ci[WS(rs, 20)]; Tt = W[38]; T3F = FNMS(Tq, To, T3E); Ts = FMA(Tq, Tr, Tp); Tw = W[39]; T3G = Tt * Tx; Tv = Tt * Tu; } { E T3M, TF, TH, TK, TG, TJ, TE, TD, TC; { E TB, T3H, Ty, TA, T3I, T3D, T3L; TB = cr[WS(rs, 28)]; TE = ci[WS(rs, 28)]; T3H = FNMS(Tw, Tu, T3G); Ty = FMA(Tw, Tx, Tv); TA = W[54]; TD = W[55]; T6G = T3F + T3H; T3I = T3F - T3H; Tz = Ts + Ty; T3D = Ts - Ty; T3L = TA * TE; TC = TA * TB; T3J = T3D - T3I; T5T = T3D + T3I; T3M = FNMS(TD, TB, T3L); } TF = FMA(TD, TE, TC); TH = cr[WS(rs, 12)]; TK = ci[WS(rs, 12)]; TG = W[22]; TJ = W[23]; { E TU, T3U, T13, T16, T3W, T10, T12, T15, T41, T14; { E T19, T1c, T18, T1b, T3P, T3K; { E TQ, TT, T3N, TI, TP, TS; TQ = cr[WS(rs, 2)]; TT = ci[WS(rs, 2)]; T3N = TG * TK; TI = TG * TH; TP = W[2]; TS = W[3]; { E T3O, TL, T3T, TR; T3O = FNMS(TJ, TH, T3N); TL = FMA(TJ, TK, TI); T3T = TP * TT; TR = TP * TQ; T6F = T3M + T3O; T3P = T3M - T3O; TM = TF + TL; T3K = TF - TL; TU = FMA(TS, TT, TR); T3U = FNMS(TS, TQ, T3T); } } T3Q = T3K + T3P; T5U = T3K - T3P; T19 = cr[WS(rs, 26)]; T1c = ci[WS(rs, 26)]; T18 = W[50]; T1b = W[51]; { E TW, TZ, TY, T3V, TX, T43, T1a, TV; TW = cr[WS(rs, 18)]; TZ = ci[WS(rs, 18)]; T43 = T18 * T1c; T1a = T18 * T19; TV = W[34]; TY = W[35]; T44 = FNMS(T1b, T19, T43); T1d = FMA(T1b, T1c, T1a); T3V = TV * TZ; TX = TV * TW; T13 = cr[WS(rs, 10)]; T16 = ci[WS(rs, 10)]; T3W = FNMS(TY, TW, T3V); T10 = FMA(TY, TZ, TX); T12 = W[18]; T15 = W[19]; } } T3X = T3U - T3W; T6K = T3U + T3W; T11 = TU + T10; T40 = TU - T10; T41 = T12 * T16; T14 = T12 * T13; T42 = FNMS(T15, T13, T41); T17 = FMA(T15, T16, T14); } } } } { E T49, T1l, T4j, T1E, T1u, T1x, T1w, T4b, T1r, T4g, T1v; { E T1A, T1D, T1C, T4i, T1B; { E T1h, T1k, T1g, T1j, T48, T1i, T1z; T1h = cr[WS(rs, 30)]; T1k = ci[WS(rs, 30)]; { E T6L, T45, T1e, T3Y; T6L = T42 + T44; T45 = T42 - T44; T1e = T17 + T1d; T3Y = T17 - T1d; T46 = T40 - T45; T5X = T40 + T45; T7E = T6K + T6L; T6M = T6K - T6L; T5Y = T3X - T3Y; T3Z = T3X + T3Y; T6J = T11 - T1e; T1f = T11 + T1e; T1g = W[58]; } T1j = W[59]; T1A = cr[WS(rs, 22)]; T1D = ci[WS(rs, 22)]; T48 = T1g * T1k; T1i = T1g * T1h; T1z = W[42]; T1C = W[43]; T49 = FNMS(T1j, T1h, T48); T1l = FMA(T1j, T1k, T1i); T4i = T1z * T1D; T1B = T1z * T1A; } { E T1n, T1q, T1m, T1p, T4a, T1o, T1t; T1n = cr[WS(rs, 14)]; T1q = ci[WS(rs, 14)]; T4j = FNMS(T1C, T1A, T4i); T1E = FMA(T1C, T1D, T1B); T1m = W[26]; T1p = W[27]; T1u = cr[WS(rs, 6)]; T1x = ci[WS(rs, 6)]; T4a = T1m * T1q; T1o = T1m * T1n; T1t = W[10]; T1w = W[11]; T4b = FNMS(T1p, T1n, T4a); T1r = FMA(T1p, T1q, T1o); T4g = T1t * T1x; T1v = T1t * T1u; } } { E T4c, T6P, T1s, T4f, T4h, T1y; T4c = T49 - T4b; T6P = T49 + T4b; T1s = T1l + T1r; T4f = T1l - T1r; T4h = FNMS(T1w, T1u, T4g); T1y = FMA(T1w, T1x, T1v); { E T4k, T6Q, T4d, T1F; T4k = T4h - T4j; T6Q = T4h + T4j; T4d = T1y - T1E; T1F = T1y + T1E; T7D = T6P + T6Q; T6R = T6P - T6Q; T61 = T4c - T4d; T4e = T4c + T4d; T6O = T1s - T1F; T1G = T1s + T1F; T60 = T4f + T4k; T4l = T4f - T4k; } } } { E T5n, T2H, T52, T30, T2Q, T2T, T2S, T5p, T2N, T4Z, T2R; { E T2W, T2Z, T2Y, T51, T2X; { E T2D, T2G, T2C, T2F, T5m, T2E, T2V; T2D = cr[WS(rs, 31)]; T2G = ci[WS(rs, 31)]; T2C = W[60]; T2F = W[61]; T2W = cr[WS(rs, 23)]; T2Z = ci[WS(rs, 23)]; T5m = T2C * T2G; T2E = T2C * T2D; T2V = W[44]; T2Y = W[45]; T5n = FNMS(T2F, T2D, T5m); T2H = FMA(T2F, T2G, T2E); T51 = T2V * T2Z; T2X = T2V * T2W; } { E T2J, T2M, T2I, T2L, T5o, T2K, T2P; T2J = cr[WS(rs, 15)]; T2M = ci[WS(rs, 15)]; T52 = FNMS(T2Y, T2W, T51); T30 = FMA(T2Y, T2Z, T2X); T2I = W[28]; T2L = W[29]; T2Q = cr[WS(rs, 7)]; T2T = ci[WS(rs, 7)]; T5o = T2I * T2M; T2K = T2I * T2J; T2P = W[12]; T2S = W[13]; T5p = FNMS(T2L, T2J, T5o); T2N = FMA(T2L, T2M, T2K); T4Z = T2P * T2T; T2R = T2P * T2Q; } } { E T5q, T7b, T2O, T4Y, T50, T2U; T5q = T5n - T5p; T7b = T5n + T5p; T2O = T2H + T2N; T4Y = T2H - T2N; T50 = FNMS(T2S, T2Q, T4Z); T2U = FMA(T2S, T2T, T2R); { E T7c, T53, T31, T5l; T7c = T50 + T52; T53 = T50 - T52; T31 = T2U + T30; T5l = T30 - T2U; T54 = T4Y - T53; T6c = T4Y + T53; T7d = T7b - T7c; T7N = T7b + T7c; T32 = T2O + T31; T76 = T2O - T31; T6f = T5q + T5l; T5r = T5l - T5q; } } } { E T4N, T1O, T4t, T27, T1X, T20, T1Z, T4P, T1U, T4q, T1Y; { E T23, T26, T25, T4s, T24; { E T1K, T1N, T1J, T1M, T4M, T1L, T22; T1K = cr[WS(rs, 1)]; T1N = ci[WS(rs, 1)]; T1J = W[0]; T1M = W[1]; T23 = cr[WS(rs, 25)]; T26 = ci[WS(rs, 25)]; T4M = T1J * T1N; T1L = T1J * T1K; T22 = W[48]; T25 = W[49]; T4N = FNMS(T1M, T1K, T4M); T1O = FMA(T1M, T1N, T1L); T4s = T22 * T26; T24 = T22 * T23; } { E T1Q, T1T, T1P, T1S, T4O, T1R, T1W; T1Q = cr[WS(rs, 17)]; T1T = ci[WS(rs, 17)]; T4t = FNMS(T25, T23, T4s); T27 = FMA(T25, T26, T24); T1P = W[32]; T1S = W[33]; T1X = cr[WS(rs, 9)]; T20 = ci[WS(rs, 9)]; T4O = T1P * T1T; T1R = T1P * T1Q; T1W = W[16]; T1Z = W[17]; T4P = FNMS(T1S, T1Q, T4O); T1U = FMA(T1S, T1T, T1R); T4q = T1W * T20; T1Y = T1W * T1X; } } { E T4Q, T70, T1V, T4p, T4r, T21; T4Q = T4N - T4P; T70 = T4N + T4P; T1V = T1O + T1U; T4p = T1O - T1U; T4r = FNMS(T1Z, T1X, T4q); T21 = FMA(T1Z, T20, T1Y); { E T71, T4u, T4R, T28; T71 = T4r + T4t; T4u = T4r - T4t; T4R = T21 - T27; T28 = T21 + T27; T4v = T4p - T4u; T65 = T4p + T4u; T72 = T70 - T71; T7I = T70 + T71; T29 = T1V + T28; T6V = T1V - T28; T68 = T4Q - T4R; T4S = T4Q + T4R; } } } { E T57, T38, T5g, T3r, T3h, T3k, T3j, T59, T3e, T5d, T3i; { E T3n, T3q, T3p, T5f, T3o; { E T34, T37, T33, T36, T56, T35, T3m; T34 = cr[WS(rs, 3)]; T37 = ci[WS(rs, 3)]; T33 = W[4]; T36 = W[5]; T3n = cr[WS(rs, 11)]; T3q = ci[WS(rs, 11)]; T56 = T33 * T37; T35 = T33 * T34; T3m = W[20]; T3p = W[21]; T57 = FNMS(T36, T34, T56); T38 = FMA(T36, T37, T35); T5f = T3m * T3q; T3o = T3m * T3n;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -