📄 hc2cfdft_20.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:03:36 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include hc2cf.h *//* * This function contains 286 FP additions, 188 FP multiplications, * (or, 176 additions, 78 multiplications, 110 fused multiply/add), * 174 stack variables, 5 constants, and 80 memory accesses */#include "hc2cf.h"static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT m; for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) { E T4X, T5i, T5k, T5e, T5c, T5d, T5j, T5f; { E T2E, T4W, T3v, T4k, T2M, T3w, T4V, T4j, T2p, T2T, T5a, T5A, T3D, T3o, T4b; E T4B, T1Y, T2S, T5z, T57, T3h, T3C, T4A, T44, TH, T2P, T50, T5x, T3z, T32; E T3P, T4D, T3V, T3U, T5w, T53, T2Q, T1o, T3A, T39; { E T1V, T9, T2w, Tu, T1, T6, T1R, T1U, T1T, T2Y, T5, T40, T2F, T10, T2C; E TE, TX, T2m, T1y, T4g, TS, T33, TW, Tw, TB, T2y, T2B, TA, T3L, T2A; E T3t, T1q, T1v, T2i, T2l, T2k, T3d, T1u, T48, Tm, Tr, T2s, T2v, T2u, T3J; E Tq, T3r, T20, T1g, T23, T1l, T1h, T3S, T3k, T21, T2H, TL, T2K, TQ, TM; E T35, T4h, T2I, T2f, T2g, T1I, T1D, T2c, T46, T2e, T3b, T1E, T28, T16, T29; E T1b, T25, T3i, T27, T3Q, T17, T1O, T1P, Tj, T1M, Te, T1L, Tb, T3Y, TV; E T1d, T1Z; { E T1S, T4, T7, T8; T7 = Rp[WS(rs, 9)]; T8 = Rm[WS(rs, 9)]; { E Ts, Tt, T2, T3; Ts = Rp[WS(rs, 2)]; Tt = Rm[WS(rs, 2)]; T2 = Ip[WS(rs, 9)]; T1V = T7 + T8; T9 = T7 - T8; T2w = Ts - Tt; Tu = Ts + Tt; T3 = Im[WS(rs, 9)]; T1 = W[36]; T6 = W[37]; T1R = W[34]; T1S = T2 - T3; T4 = T2 + T3; T1U = W[35]; } { E TY, TZ, TC, TD; TY = Ip[0]; T1T = T1R * T1S; T2Y = T6 * T4; T5 = T1 * T4; T40 = T1U * T1S; TZ = Im[0]; TC = Rp[WS(rs, 7)]; TD = Rm[WS(rs, 7)]; { E T1w, T1x, TT, TU; T1w = Rp[WS(rs, 1)]; T2F = TY - TZ; T10 = TY + TZ; T2C = TC - TD; TE = TC + TD; T1x = Rm[WS(rs, 1)]; TT = Rm[0]; TU = Rp[0]; TX = W[0]; T2m = T1w + T1x; T1y = T1w - T1x; T4g = TU + TT; TV = TT - TU; TS = W[1]; } } } { E T2j, T1t, T1r, T1s; { E Tx, Ty, T2z, Tz; Tx = Ip[WS(rs, 7)]; Ty = Im[WS(rs, 7)]; T33 = TX * TV; TW = TS * TV; Tw = W[26]; T2z = Tx + Ty; Tz = Tx - Ty; TB = W[27]; T2y = W[28]; T2B = W[29]; TA = Tw * Tz; T3L = TB * Tz; T2A = T2y * T2z; T3t = T2B * T2z; } T1r = Ip[WS(rs, 1)]; T1s = Im[WS(rs, 1)]; T1q = W[4]; T1v = W[5]; T2i = W[2]; T2j = T1r - T1s; T1t = T1r + T1s; T2l = W[3]; { E T2t, Tp, Tn, To; Tn = Ip[WS(rs, 2)]; T2k = T2i * T2j; T3d = T1v * T1t; T1u = T1q * T1t; T48 = T2l * T2j; To = Im[WS(rs, 2)]; Tm = W[6]; Tr = W[7]; T2s = W[8]; T2t = Tn + To; Tp = Tn - To; T2v = W[9]; { E T1e, T1f, T1j, T1k; T1e = Ip[WS(rs, 3)]; T2u = T2s * T2t; T3J = Tr * Tp; Tq = Tm * Tp; T3r = T2v * T2t; T1f = Im[WS(rs, 3)]; T1j = Rp[WS(rs, 3)]; T1k = Rm[WS(rs, 3)]; T1d = W[10]; T20 = T1e + T1f; T1g = T1e - T1f; T23 = T1j - T1k; T1l = T1j + T1k; T1Z = W[12]; T1h = T1d * T1g; } } } { E T2d, T1A, TI, T2G, T26, T13; { E TJ, TK, TO, TP; TJ = Ip[WS(rs, 5)]; T3S = T1d * T1l; T3k = T1Z * T23; T21 = T1Z * T20; TK = Im[WS(rs, 5)]; TO = Rp[WS(rs, 5)]; TP = Rm[WS(rs, 5)]; TI = W[20]; T2H = TJ - TK; TL = TJ + TK; T2K = TO + TP; TQ = TO - TP; T2G = W[18]; TM = TI * TL; } { E T1G, T1H, T1B, T1C; T1G = Rm[WS(rs, 6)]; T35 = TI * TQ; T4h = T2G * T2K; T2I = T2G * T2H; T1H = Rp[WS(rs, 6)]; T1B = Ip[WS(rs, 6)]; T1C = Im[WS(rs, 6)]; T2f = W[23]; T2g = T1H + T1G; T1I = T1G - T1H; T2d = T1B - T1C; T1D = T1B + T1C; T2c = W[22]; T1A = W[24]; T46 = T2f * T2d; } { E T14, T15, T19, T1a; T14 = Ip[WS(rs, 8)]; T2e = T2c * T2d; T3b = T1A * T1I; T1E = T1A * T1D; T15 = Im[WS(rs, 8)]; T19 = Rp[WS(rs, 8)]; T1a = Rm[WS(rs, 8)]; T28 = W[32]; T16 = T14 - T15; T29 = T14 + T15; T1b = T19 + T1a; T26 = T1a - T19; T25 = W[33]; T13 = W[30]; T3i = T28 * T26; } { E Th, Ti, Tc, Td; Th = Rm[WS(rs, 4)]; T27 = T25 * T26; T3Q = T13 * T1b; T17 = T13 * T16; Ti = Rp[WS(rs, 4)]; Tc = Ip[WS(rs, 4)]; Td = Im[WS(rs, 4)]; T1O = W[15]; T1P = Ti + Th; Tj = Th - Ti; T1M = Tc - Td; Te = Tc + Td; T1L = W[14]; Tb = W[16]; T3Y = T1O * T1M; } } { E T1N, T2W, Tf, T2L, T4i; { E T2x, T2D, T3s, T3u, T2J; T2x = FNMS(T2v, T2w, T2u); T1N = T1L * T1M; T2W = Tb * Tj; Tf = Tb * Te; T2D = FNMS(T2B, T2C, T2A); T3s = FMA(T2s, T2w, T3r); T3u = FMA(T2y, T2C, T3t); T2J = W[19]; T2E = T2x - T2D; T4W = T2x + T2D; T3v = T3s + T3u; T4k = T3u - T3s; T2L = FNMS(T2J, T2K, T2I); T4i = FMA(T2J, T2H, T4h); } { E T42, T43, T45, T4a, T3O, T3N; { E T2a, T3j, T47, T3l, T24, T2o, T3n, T49, T22, T2h, T2n; T2a = FMA(T28, T29, T27); T3j = FNMS(T25, T29, T3i); T2M = T2F - T2L; T3w = T2L + T2F; T4V = T4g + T4i; T4j = T4g - T4i; T22 = W[13]; T2h = FNMS(T2f, T2g, T2e); T2n = FNMS(T2l, T2m, T2k); T47 = FMA(T2c, T2g, T46); T3l = FMA(T22, T20, T3k); T24 = FNMS(T22, T23, T21); T2o = T2h - T2n; T3n = T2h + T2n; T49 = FMA(T2i, T2m, T48); { E T2b, T58, T3m, T59; T2b = T24 - T2a; T58 = T2a + T24; T3m = T3j - T3l; T45 = T3j + T3l; T4a = T47 - T49; T59 = T47 + T49; T2p = T2b - T2o; T2T = T2b + T2o; T5a = T58 + T59; T5A = T59 - T58; T3D = T3m + T3n; T3o = T3m - T3n; } } { E T1z, T3e, T1Q, T3c, T1J, T1W, T3Z, T41, T1F; T1z = FNMS(T1v, T1y, T1u); T3e = FMA(T1q, T1y, T3d); T1F = W[25]; T4b = T45 + T4a; T4B = T4a - T45; T1Q = FNMS(T1O, T1P, T1N); T3c = FNMS(T1F, T1D, T3b); T1J = FMA(T1F, T1I, T1E); T1W = FNMS(T1U, T1V, T1T); T3Z = FMA(T1L, T1P, T3Y); T41 = FMA(T1R, T1V, T40); { E T56, T3g, T55, T1K, T1X, T3f; T56 = T1J + T1z; T1K = T1z - T1J; T3g = T1Q + T1W; T1X = T1Q - T1W; T55 = T3Z + T41; T42 = T3Z - T41; T1Y = T1K - T1X; T2S = T1X + T1K; T43 = T3c + T3e; T3f = T3c - T3e; T5z = T55 - T56; T57 = T55 + T56; T3h = T3f - T3g; T3C = T3g + T3f; } } { E Ta, T2Z, T3K, T2X, Tk, TG, T31, T3M, Tg, Tv, TF; Ta = FNMS(T6, T9, T5); T4A = T42 - T43; T44 = T42 + T43; T2Z = FMA(T1, T9, T2Y); Tg = W[17]; Tv = FNMS(Tr, Tu, Tq); TF = FNMS(TB, TE, TA); T3K = FMA(Tm, Tu, T3J); T2X = FNMS(Tg, Te, T2W); Tk = FMA(Tg, Tj, Tf); TG = Tv - TF; T31 = Tv + TF; T3M = FMA(Tw, TE, T3L); { E Tl, T4Z, T30, T4Y; Tl = Ta - Tk; T4Z = Tk + Ta; T30 = T2X - T2Z; T3O = T2X + T2Z; T3N = T3K - T3M; T4Y = T3K + T3M; TH = Tl - TG; T2P = TG + Tl; T50 = T4Y + T4Z; T5x = T4Y - T4Z; T3z = T31 + T30; T32 = T30 - T31; } } { E T11, T34, T36, TR, T1i, T3R, T1c, TN, T18; T11 = FMA(TX, T10, TW); T34 = FNMS(TS, T10, T33); TN = W[21]; T3P = T3N + T3O; T4D = T3N - T3O; T18 = W[31]; T36 = FMA(TN, TL, T35); TR = FNMS(TN, TQ, TM); T1i = W[11]; T3R = FMA(T18, T16, T3Q); T1c = FNMS(T18, T1b, T17); { E T52, T12, T3T, T1m; T52 = TR + T11; T12 = TR - T11; T3T = FMA(T1i, T1g, T3S); T1m = FNMS(T1i, T1l, T1h); { E T37, T51, T38, T1n;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -