⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cfdft_20.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:03:36 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cfdft_20 -include hc2cf.h *//* * This function contains 286 FP additions, 188 FP multiplications, * (or, 176 additions, 78 multiplications, 110 fused multiply/add), * 174 stack variables, 5 constants, and 80 memory accesses */#include "hc2cf.h"static void hc2cfdft_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     INT m;     for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(rs)) {	  E T4X, T5i, T5k, T5e, T5c, T5d, T5j, T5f;	  {	       E T2E, T4W, T3v, T4k, T2M, T3w, T4V, T4j, T2p, T2T, T5a, T5A, T3D, T3o, T4b;	       E T4B, T1Y, T2S, T5z, T57, T3h, T3C, T4A, T44, TH, T2P, T50, T5x, T3z, T32;	       E T3P, T4D, T3V, T3U, T5w, T53, T2Q, T1o, T3A, T39;	       {		    E T1V, T9, T2w, Tu, T1, T6, T1R, T1U, T1T, T2Y, T5, T40, T2F, T10, T2C;		    E TE, TX, T2m, T1y, T4g, TS, T33, TW, Tw, TB, T2y, T2B, TA, T3L, T2A;		    E T3t, T1q, T1v, T2i, T2l, T2k, T3d, T1u, T48, Tm, Tr, T2s, T2v, T2u, T3J;		    E Tq, T3r, T20, T1g, T23, T1l, T1h, T3S, T3k, T21, T2H, TL, T2K, TQ, TM;		    E T35, T4h, T2I, T2f, T2g, T1I, T1D, T2c, T46, T2e, T3b, T1E, T28, T16, T29;		    E T1b, T25, T3i, T27, T3Q, T17, T1O, T1P, Tj, T1M, Te, T1L, Tb, T3Y, TV;		    E T1d, T1Z;		    {			 E T1S, T4, T7, T8;			 T7 = Rp[WS(rs, 9)];			 T8 = Rm[WS(rs, 9)];			 {			      E Ts, Tt, T2, T3;			      Ts = Rp[WS(rs, 2)];			      Tt = Rm[WS(rs, 2)];			      T2 = Ip[WS(rs, 9)];			      T1V = T7 + T8;			      T9 = T7 - T8;			      T2w = Ts - Tt;			      Tu = Ts + Tt;			      T3 = Im[WS(rs, 9)];			      T1 = W[36];			      T6 = W[37];			      T1R = W[34];			      T1S = T2 - T3;			      T4 = T2 + T3;			      T1U = W[35];			 }			 {			      E TY, TZ, TC, TD;			      TY = Ip[0];			      T1T = T1R * T1S;			      T2Y = T6 * T4;			      T5 = T1 * T4;			      T40 = T1U * T1S;			      TZ = Im[0];			      TC = Rp[WS(rs, 7)];			      TD = Rm[WS(rs, 7)];			      {				   E T1w, T1x, TT, TU;				   T1w = Rp[WS(rs, 1)];				   T2F = TY - TZ;				   T10 = TY + TZ;				   T2C = TC - TD;				   TE = TC + TD;				   T1x = Rm[WS(rs, 1)];				   TT = Rm[0];				   TU = Rp[0];				   TX = W[0];				   T2m = T1w + T1x;				   T1y = T1w - T1x;				   T4g = TU + TT;				   TV = TT - TU;				   TS = W[1];			      }			 }		    }		    {			 E T2j, T1t, T1r, T1s;			 {			      E Tx, Ty, T2z, Tz;			      Tx = Ip[WS(rs, 7)];			      Ty = Im[WS(rs, 7)];			      T33 = TX * TV;			      TW = TS * TV;			      Tw = W[26];			      T2z = Tx + Ty;			      Tz = Tx - Ty;			      TB = W[27];			      T2y = W[28];			      T2B = W[29];			      TA = Tw * Tz;			      T3L = TB * Tz;			      T2A = T2y * T2z;			      T3t = T2B * T2z;			 }			 T1r = Ip[WS(rs, 1)];			 T1s = Im[WS(rs, 1)];			 T1q = W[4];			 T1v = W[5];			 T2i = W[2];			 T2j = T1r - T1s;			 T1t = T1r + T1s;			 T2l = W[3];			 {			      E T2t, Tp, Tn, To;			      Tn = Ip[WS(rs, 2)];			      T2k = T2i * T2j;			      T3d = T1v * T1t;			      T1u = T1q * T1t;			      T48 = T2l * T2j;			      To = Im[WS(rs, 2)];			      Tm = W[6];			      Tr = W[7];			      T2s = W[8];			      T2t = Tn + To;			      Tp = Tn - To;			      T2v = W[9];			      {				   E T1e, T1f, T1j, T1k;				   T1e = Ip[WS(rs, 3)];				   T2u = T2s * T2t;				   T3J = Tr * Tp;				   Tq = Tm * Tp;				   T3r = T2v * T2t;				   T1f = Im[WS(rs, 3)];				   T1j = Rp[WS(rs, 3)];				   T1k = Rm[WS(rs, 3)];				   T1d = W[10];				   T20 = T1e + T1f;				   T1g = T1e - T1f;				   T23 = T1j - T1k;				   T1l = T1j + T1k;				   T1Z = W[12];				   T1h = T1d * T1g;			      }			 }		    }		    {			 E T2d, T1A, TI, T2G, T26, T13;			 {			      E TJ, TK, TO, TP;			      TJ = Ip[WS(rs, 5)];			      T3S = T1d * T1l;			      T3k = T1Z * T23;			      T21 = T1Z * T20;			      TK = Im[WS(rs, 5)];			      TO = Rp[WS(rs, 5)];			      TP = Rm[WS(rs, 5)];			      TI = W[20];			      T2H = TJ - TK;			      TL = TJ + TK;			      T2K = TO + TP;			      TQ = TO - TP;			      T2G = W[18];			      TM = TI * TL;			 }			 {			      E T1G, T1H, T1B, T1C;			      T1G = Rm[WS(rs, 6)];			      T35 = TI * TQ;			      T4h = T2G * T2K;			      T2I = T2G * T2H;			      T1H = Rp[WS(rs, 6)];			      T1B = Ip[WS(rs, 6)];			      T1C = Im[WS(rs, 6)];			      T2f = W[23];			      T2g = T1H + T1G;			      T1I = T1G - T1H;			      T2d = T1B - T1C;			      T1D = T1B + T1C;			      T2c = W[22];			      T1A = W[24];			      T46 = T2f * T2d;			 }			 {			      E T14, T15, T19, T1a;			      T14 = Ip[WS(rs, 8)];			      T2e = T2c * T2d;			      T3b = T1A * T1I;			      T1E = T1A * T1D;			      T15 = Im[WS(rs, 8)];			      T19 = Rp[WS(rs, 8)];			      T1a = Rm[WS(rs, 8)];			      T28 = W[32];			      T16 = T14 - T15;			      T29 = T14 + T15;			      T1b = T19 + T1a;			      T26 = T1a - T19;			      T25 = W[33];			      T13 = W[30];			      T3i = T28 * T26;			 }			 {			      E Th, Ti, Tc, Td;			      Th = Rm[WS(rs, 4)];			      T27 = T25 * T26;			      T3Q = T13 * T1b;			      T17 = T13 * T16;			      Ti = Rp[WS(rs, 4)];			      Tc = Ip[WS(rs, 4)];			      Td = Im[WS(rs, 4)];			      T1O = W[15];			      T1P = Ti + Th;			      Tj = Th - Ti;			      T1M = Tc - Td;			      Te = Tc + Td;			      T1L = W[14];			      Tb = W[16];			      T3Y = T1O * T1M;			 }		    }		    {			 E T1N, T2W, Tf, T2L, T4i;			 {			      E T2x, T2D, T3s, T3u, T2J;			      T2x = FNMS(T2v, T2w, T2u);			      T1N = T1L * T1M;			      T2W = Tb * Tj;			      Tf = Tb * Te;			      T2D = FNMS(T2B, T2C, T2A);			      T3s = FMA(T2s, T2w, T3r);			      T3u = FMA(T2y, T2C, T3t);			      T2J = W[19];			      T2E = T2x - T2D;			      T4W = T2x + T2D;			      T3v = T3s + T3u;			      T4k = T3u - T3s;			      T2L = FNMS(T2J, T2K, T2I);			      T4i = FMA(T2J, T2H, T4h);			 }			 {			      E T42, T43, T45, T4a, T3O, T3N;			      {				   E T2a, T3j, T47, T3l, T24, T2o, T3n, T49, T22, T2h, T2n;				   T2a = FMA(T28, T29, T27);				   T3j = FNMS(T25, T29, T3i);				   T2M = T2F - T2L;				   T3w = T2L + T2F;				   T4V = T4g + T4i;				   T4j = T4g - T4i;				   T22 = W[13];				   T2h = FNMS(T2f, T2g, T2e);				   T2n = FNMS(T2l, T2m, T2k);				   T47 = FMA(T2c, T2g, T46);				   T3l = FMA(T22, T20, T3k);				   T24 = FNMS(T22, T23, T21);				   T2o = T2h - T2n;				   T3n = T2h + T2n;				   T49 = FMA(T2i, T2m, T48);				   {					E T2b, T58, T3m, T59;					T2b = T24 - T2a;					T58 = T2a + T24;					T3m = T3j - T3l;					T45 = T3j + T3l;					T4a = T47 - T49;					T59 = T47 + T49;					T2p = T2b - T2o;					T2T = T2b + T2o;					T5a = T58 + T59;					T5A = T59 - T58;					T3D = T3m + T3n;					T3o = T3m - T3n;				   }			      }			      {				   E T1z, T3e, T1Q, T3c, T1J, T1W, T3Z, T41, T1F;				   T1z = FNMS(T1v, T1y, T1u);				   T3e = FMA(T1q, T1y, T3d);				   T1F = W[25];				   T4b = T45 + T4a;				   T4B = T4a - T45;				   T1Q = FNMS(T1O, T1P, T1N);				   T3c = FNMS(T1F, T1D, T3b);				   T1J = FMA(T1F, T1I, T1E);				   T1W = FNMS(T1U, T1V, T1T);				   T3Z = FMA(T1L, T1P, T3Y);				   T41 = FMA(T1R, T1V, T40);				   {					E T56, T3g, T55, T1K, T1X, T3f;					T56 = T1J + T1z;					T1K = T1z - T1J;					T3g = T1Q + T1W;					T1X = T1Q - T1W;					T55 = T3Z + T41;					T42 = T3Z - T41;					T1Y = T1K - T1X;					T2S = T1X + T1K;					T43 = T3c + T3e;					T3f = T3c - T3e;					T5z = T55 - T56;					T57 = T55 + T56;					T3h = T3f - T3g;					T3C = T3g + T3f;				   }			      }			      {				   E Ta, T2Z, T3K, T2X, Tk, TG, T31, T3M, Tg, Tv, TF;				   Ta = FNMS(T6, T9, T5);				   T4A = T42 - T43;				   T44 = T42 + T43;				   T2Z = FMA(T1, T9, T2Y);				   Tg = W[17];				   Tv = FNMS(Tr, Tu, Tq);				   TF = FNMS(TB, TE, TA);				   T3K = FMA(Tm, Tu, T3J);				   T2X = FNMS(Tg, Te, T2W);				   Tk = FMA(Tg, Tj, Tf);				   TG = Tv - TF;				   T31 = Tv + TF;				   T3M = FMA(Tw, TE, T3L);				   {					E Tl, T4Z, T30, T4Y;					Tl = Ta - Tk;					T4Z = Tk + Ta;					T30 = T2X - T2Z;					T3O = T2X + T2Z;					T3N = T3K - T3M;					T4Y = T3K + T3M;					TH = Tl - TG;					T2P = TG + Tl;					T50 = T4Y + T4Z;					T5x = T4Y - T4Z;					T3z = T31 + T30;					T32 = T30 - T31;				   }			      }			      {				   E T11, T34, T36, TR, T1i, T3R, T1c, TN, T18;				   T11 = FMA(TX, T10, TW);				   T34 = FNMS(TS, T10, T33);				   TN = W[21];				   T3P = T3N + T3O;				   T4D = T3N - T3O;				   T18 = W[31];				   T36 = FMA(TN, TL, T35);				   TR = FNMS(TN, TQ, TM);				   T1i = W[11];				   T3R = FMA(T18, T16, T3Q);				   T1c = FNMS(T18, T1b, T17);				   {					E T52, T12, T3T, T1m;					T52 = TR + T11;					T12 = TR - T11;					T3T = FMA(T1i, T1g, T3S);					T1m = FNMS(T1i, T1l, T1h);					{					     E T37, T51, T38, T1n;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -