⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hf_10.c

📁 快速fft变换
💻 C
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:56:25 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hf_10 -include hf.h *//* * This function contains 102 FP additions, 72 FP multiplications, * (or, 48 additions, 18 multiplications, 54 fused multiply/add), * 72 stack variables, 4 constants, and 40 memory accesses */#include "hf.h"static void hf_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     INT m;     for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(rs)) {	  E T29, T2d, T2c, T2e;	  {	       E T23, T1U, T8, T12, T1y, T1P, T25, T1H, T2b, T18, T10, T1Y, T1I, Tl, T13;	       E T1J, Ty, T14, T1n, T1O, T24, T1K;	       {		    E T1, T1R, T3, T6, T2, T5;		    T1 = cr[0];		    T1R = ci[0];		    T3 = cr[WS(rs, 5)];		    T6 = ci[WS(rs, 5)];		    T2 = W[8];		    T5 = W[9];		    {			 E T1p, TY, T1x, T1F, TM, T16, T1r, TS;			 {			      E TF, T1w, TO, TR, T1u, TL, TN, TQ, T1q, TP;			      {				   E TU, TX, TT, TW;				   {					E TB, TE, T1S, T4, TA, TD;					TB = cr[WS(rs, 4)];					TE = ci[WS(rs, 4)];					T1S = T2 * T6;					T4 = T2 * T3;					TA = W[6];					TD = W[7];					{					     E T1T, T7, T1v, TC;					     T1T = FNMS(T5, T3, T1S);					     T7 = FMA(T5, T6, T4);					     T1v = TA * TE;					     TC = TA * TB;					     T23 = T1T + T1R;					     T1U = T1R - T1T;					     T8 = T1 - T7;					     T12 = T1 + T7;					     TF = FMA(TD, TE, TC);					     T1w = FNMS(TD, TB, T1v);					}				   }				   TU = cr[WS(rs, 1)];				   TX = ci[WS(rs, 1)];				   TT = W[0];				   TW = W[1];				   {					E TH, TK, TJ, T1t, TI, T1o, TV, TG;					TH = cr[WS(rs, 9)];					TK = ci[WS(rs, 9)];					T1o = TT * TX;					TV = TT * TU;					TG = W[16];					TJ = W[17];					T1p = FNMS(TW, TU, T1o);					TY = FMA(TW, TX, TV);					T1t = TG * TK;					TI = TG * TH;					TO = cr[WS(rs, 6)];					TR = ci[WS(rs, 6)];					T1u = FNMS(TJ, TH, T1t);					TL = FMA(TJ, TK, TI);					TN = W[10];					TQ = W[11];				   }			      }			      T1x = T1u - T1w;			      T1F = T1w + T1u;			      TM = TF - TL;			      T16 = TF + TL;			      T1q = TN * TR;			      TP = TN * TO;			      T1r = FNMS(TQ, TO, T1q);			      TS = FMA(TQ, TR, TP);			 }			 {			      E T1l, Te, T1e, Tx, Tn, Tq, Tp, T1j, Tk, T1f, To;			      {				   E Tt, Tw, Tv, T1d, Tu;				   {					E Ta, Td, T9, Tc, T1k, Tb, Ts;					Ta = cr[WS(rs, 2)];					Td = ci[WS(rs, 2)];					{					     E T1G, T1s, TZ, T17;					     T1G = T1r + T1p;					     T1s = T1p - T1r;					     TZ = TS - TY;					     T17 = TS + TY;					     T1y = T1s - T1x;					     T1P = T1x + T1s;					     T25 = T1F + T1G;					     T1H = T1F - T1G;					     T2b = T16 - T17;					     T18 = T16 + T17;					     T10 = TM + TZ;					     T1Y = TZ - TM;					     T9 = W[2];					}					Tc = W[3];					Tt = cr[WS(rs, 3)];					Tw = ci[WS(rs, 3)];					T1k = T9 * Td;					Tb = T9 * Ta;					Ts = W[4];					Tv = W[5];					T1l = FNMS(Tc, Ta, T1k);					Te = FMA(Tc, Td, Tb);					T1d = Ts * Tw;					Tu = Ts * Tt;				   }				   {					E Tg, Tj, Tf, Ti, T1i, Th, Tm;					Tg = cr[WS(rs, 7)];					Tj = ci[WS(rs, 7)];					T1e = FNMS(Tv, Tt, T1d);					Tx = FMA(Tv, Tw, Tu);					Tf = W[12];					Ti = W[13];					Tn = cr[WS(rs, 8)];					Tq = ci[WS(rs, 8)];					T1i = Tf * Tj;					Th = Tf * Tg;					Tm = W[14];					Tp = W[15];					T1j = FNMS(Ti, Tg, T1i);					Tk = FMA(Ti, Tj, Th);					T1f = Tm * Tq;					To = Tm * Tn;				   }			      }			      {				   E T1m, T1g, Tr, T1h;				   T1m = T1j - T1l;				   T1I = T1l + T1j;				   Tl = Te - Tk;				   T13 = Te + Tk;				   T1g = FNMS(Tp, Tn, T1f);				   Tr = FMA(Tp, Tq, To);				   T1J = T1g + T1e;				   T1h = T1e - T1g;				   Ty = Tr - Tx;				   T14 = Tr + Tx;				   T1n = T1h - T1m;				   T1O = T1m + T1h;			      }			 }		    }	       }	       T24 = T1I + T1J;	       T1K = T1I - T1J;	       {		    E T2a, T15, Tz, T1Z;		    T2a = T13 - T14;		    T15 = T13 + T14;		    Tz = Tl + Ty;		    T1Z = Ty - Tl;		    {			 E T1L, T1N, T1E, T1M;			 {			      E T19, T1D, T1C, T11, T1b;			      T19 = T15 + T18;			      T1D = T15 - T18;			      T11 = Tz + T10;			      T1b = Tz - T10;			      {				   E T1B, T1z, T1a, T1A, T1c;				   T1B = FNMS(KP618033988, T1n, T1y);				   T1z = FMA(KP618033988, T1y, T1n);				   ci[WS(rs, 4)] = T8 + T11;				   T1a = FNMS(KP250000000, T11, T8);				   T1A = FNMS(KP559016994, T1b, T1a);				   T1c = FMA(KP559016994, T1b, T1a);				   T1C = FNMS(KP250000000, T19, T12);				   T1L = FNMS(KP618033988, T1K, T1H);				   T1N = FMA(KP618033988, T1H, T1K);				   cr[WS(rs, 1)] = FMA(KP951056516, T1z, T1c);				   ci[0] = FNMS(KP951056516, T1z, T1c);				   cr[WS(rs, 3)] = FMA(KP951056516, T1B, T1A);				   ci[WS(rs, 2)] = FNMS(KP951056516, T1B, T1A);			      }			      cr[0] = T12 + T19;			      T1E = FNMS(KP559016994, T1D, T1C);			      T1M = FMA(KP559016994, T1D, T1C);			 }			 {			      E T1X, T21, T20, T22, T1Q, T1W, T1V, T26, T28, T27;			      T1Q = T1O + T1P;			      T1W = T1P - T1O;			      ci[WS(rs, 3)] = FMA(KP951056516, T1N, T1M);			      cr[WS(rs, 4)] = FNMS(KP951056516, T1N, T1M);			      ci[WS(rs, 1)] = FMA(KP951056516, T1L, T1E);			      cr[WS(rs, 2)] = FNMS(KP951056516, T1L, T1E);			      T1V = FMA(KP250000000, T1Q, T1U);			      cr[WS(rs, 5)] = T1Q - T1U;			      T1X = FNMS(KP559016994, T1W, T1V);			      T21 = FMA(KP559016994, T1W, T1V);			      T20 = FNMS(KP618033988, T1Z, T1Y);			      T22 = FMA(KP618033988, T1Y, T1Z);			      T26 = T24 + T25;			      T28 = T24 - T25;			      ci[WS(rs, 8)] = FMA(KP951056516, T22, T21);			      cr[WS(rs, 9)] = FMS(KP951056516, T22, T21);			      ci[WS(rs, 6)] = FMA(KP951056516, T20, T1X);			      cr[WS(rs, 7)] = FMS(KP951056516, T20, T1X);			      T27 = FNMS(KP250000000, T26, T23);			      ci[WS(rs, 9)] = T26 + T23;			      T29 = FMA(KP559016994, T28, T27);			      T2d = FNMS(KP559016994, T28, T27);			      T2c = FMA(KP618033988, T2b, T2a);			      T2e = FNMS(KP618033988, T2a, T2b);			 }		    }	       }	  }	  ci[WS(rs, 7)] = FMA(KP951056516, T2e, T2d);	  cr[WS(rs, 8)] = FMS(KP951056516, T2e, T2d);	  ci[WS(rs, 5)] = FMA(KP951056516, T2c, T29);	  cr[WS(rs, 6)] = FMS(KP951056516, T2c, T29);     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 10},     {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 10, "hf_10", twinstr, &GENUS, {48, 18, 54, 0} };void X(codelet_hf_10) (planner *p) {     X(khc2hc_register) (p, hf_10, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hf_10 -include hf.h *//* * This function contains 102 FP additions, 60 FP multiplications, * (or, 72 additions, 30 multiplications, 30 fused multiply/add), * 45 stack variables, 4 constants, and 40 memory accesses */#include "hf.h"static void hf_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP587785252, +0.587785252292473129168705954639072768597652438);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     INT m;     for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(rs)) {	  E T7, T1R, TT, T1C, TF, TQ, TR, T1o, T1p, T1P, TX, TY, TZ, T1d, T1g;	  E T1x, Ti, Tt, Tu, T1r, T1s, T1O, TU, TV, TW, T16, T19, T1y;	  {	       E T1, T1A, T6, T1B;	       T1 = cr[0];	       T1A = ci[0];	       {		    E T3, T5, T2, T4;		    T3 = cr[WS(rs, 5)];		    T5 = ci[WS(rs, 5)];		    T2 = W[8];		    T4 = W[9];		    T6 = FMA(T2, T3, T4 * T5);		    T1B = FNMS(T4, T3, T2 * T5);	       }	       T7 = T1 - T6;	       T1R = T1B + T1A;	       TT = T1 + T6;	       T1C = T1A - T1B;	  }	  {	       E Tz, T1b, TP, T1e, TE, T1c, TK, T1f;	       {		    E Tw, Ty, Tv, Tx;		    Tw = cr[WS(rs, 4)];		    Ty = ci[WS(rs, 4)];		    Tv = W[6];		    Tx = W[7];		    Tz = FMA(Tv, Tw, Tx * Ty);		    T1b = FNMS(Tx, Tw, Tv * Ty);	       }	       {		    E TM, TO, TL, TN;		    TM = cr[WS(rs, 1)];		    TO = ci[WS(rs, 1)];		    TL = W[0];		    TN = W[1];		    TP = FMA(TL, TM, TN * TO);		    T1e = FNMS(TN, TM, TL * TO);	       }	       {		    E TB, TD, TA, TC;		    TB = cr[WS(rs, 9)];		    TD = ci[WS(rs, 9)];		    TA = W[16];		    TC = W[17];		    TE = FMA(TA, TB, TC * TD);		    T1c = FNMS(TC, TB, TA * TD);	       }	       {		    E TH, TJ, TG, TI;		    TH = cr[WS(rs, 6)];		    TJ = ci[WS(rs, 6)];		    TG = W[10];		    TI = W[11];		    TK = FMA(TG, TH, TI * TJ);		    T1f = FNMS(TI, TH, TG * TJ);	       }	       TF = Tz - TE;	       TQ = TK - TP;	       TR = TF + TQ;	       T1o = T1b + T1c;	       T1p = T1f + T1e;	       T1P = T1o + T1p;	       TX = Tz + TE;	       TY = TK + TP;	       TZ = TX + TY;	       T1d = T1b - T1c;	       T1g = T1e - T1f;	       T1x = T1g - T1d;	  }	  {	       E Tc, T14, Ts, T18, Th, T15, Tn, T17;	       {		    E T9, Tb, T8, Ta;		    T9 = cr[WS(rs, 2)];		    Tb = ci[WS(rs, 2)];		    T8 = W[2];		    Ta = W[3];		    Tc = FMA(T8, T9, Ta * Tb);		    T14 = FNMS(Ta, T9, T8 * Tb);	       }	       {		    E Tp, Tr, To, Tq;		    Tp = cr[WS(rs, 3)];		    Tr = ci[WS(rs, 3)];		    To = W[4];		    Tq = W[5];		    Ts = FMA(To, Tp, Tq * Tr);		    T18 = FNMS(Tq, Tp, To * Tr);	       }	       {		    E Te, Tg, Td, Tf;		    Te = cr[WS(rs, 7)];		    Tg = ci[WS(rs, 7)];		    Td = W[12];		    Tf = W[13];		    Th = FMA(Td, Te, Tf * Tg);		    T15 = FNMS(Tf, Te, Td * Tg);	       }	       {		    E Tk, Tm, Tj, Tl;		    Tk = cr[WS(rs, 8)];		    Tm = ci[WS(rs, 8)];		    Tj = W[14];		    Tl = W[15];		    Tn = FMA(Tj, Tk, Tl * Tm);		    T17 = FNMS(Tl, Tk, Tj * Tm);	       }	       Ti = Tc - Th;	       Tt = Tn - Ts;	       Tu = Ti + Tt;	       T1r = T14 + T15;	       T1s = T17 + T18;	       T1O = T1r + T1s;	       TU = Tc + Th;	       TV = Tn + Ts;	       TW = TU + TV;	       T16 = T14 - T15;	       T19 = T17 - T18;	       T1y = T16 + T19;	  }	  {	       E T11, TS, T12, T1i, T1k, T1a, T1h, T1j, T13;	       T11 = KP559016994 * (Tu - TR);	       TS = Tu + TR;	       T12 = FNMS(KP250000000, TS, T7);	       T1a = T16 - T19;	       T1h = T1d + T1g;	       T1i = FMA(KP951056516, T1a, KP587785252 * T1h);	       T1k = FNMS(KP587785252, T1a, KP951056516 * T1h);	       ci[WS(rs, 4)] = T7 + TS;	       T1j = T12 - T11;	       ci[WS(rs, 2)] = T1j - T1k;	       cr[WS(rs, 3)] = T1j + T1k;	       T13 = T11 + T12;	       ci[0] = T13 - T1i;	       cr[WS(rs, 1)] = T13 + T1i;	  }	  {	       E T1m, T10, T1l, T1u, T1w, T1q, T1t, T1v, T1n;	       T1m = KP559016994 * (TW - TZ);	       T10 = TW + TZ;	       T1l = FNMS(KP250000000, T10, TT);	       T1q = T1o - T1p;	       T1t = T1r - T1s;	       T1u = FNMS(KP587785252, T1t, KP951056516 * T1q);	       T1w = FMA(KP951056516, T1t, KP587785252 * T1q);	       cr[0] = TT + T10;	       T1v = T1m + T1l;	       cr[WS(rs, 4)] = T1v - T1w;	       ci[WS(rs, 3)] = T1v + T1w;	       T1n = T1l - T1m;	       cr[WS(rs, 2)] = T1n - T1u;	       ci[WS(rs, 1)] = T1n + T1u;	  }	  {	       E T1H, T1z, T1G, T1F, T1J, T1D, T1E, T1K, T1I;	       T1H = KP559016994 * (T1y + T1x);	       T1z = T1x - T1y;	       T1G = FMA(KP250000000, T1z, T1C);	       T1D = Ti - Tt;	       T1E = TQ - TF;	       T1F = FMA(KP587785252, T1D, KP951056516 * T1E);	       T1J = FNMS(KP951056516, T1D, KP587785252 * T1E);	       cr[WS(rs, 5)] = T1z - T1C;	       T1K = T1H + T1G;	       cr[WS(rs, 9)] = T1J - T1K;	       ci[WS(rs, 8)] = T1J + T1K;	       T1I = T1G - T1H;	       cr[WS(rs, 7)] = T1F - T1I;	       ci[WS(rs, 6)] = T1F + T1I;	  }	  {	       E T1Q, T1S, T1T, T1N, T1V, T1L, T1M, T1W, T1U;	       T1Q = KP559016994 * (T1O - T1P);	       T1S = T1O + T1P;	       T1T = FNMS(KP250000000, T1S, T1R);	       T1L = TU - TV;	       T1M = TX - TY;	       T1N = FMA(KP951056516, T1L, KP587785252 * T1M);	       T1V = FNMS(KP587785252, T1L, KP951056516 * T1M);	       ci[WS(rs, 9)] = T1S + T1R;	       T1W = T1T - T1Q;	       cr[WS(rs, 8)] = T1V - T1W;	       ci[WS(rs, 7)] = T1V + T1W;	       T1U = T1Q + T1T;	       cr[WS(rs, 6)] = T1N - T1U;	       ci[WS(rs, 5)] = T1N + T1U;	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 10},     {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 10, "hf_10", twinstr, &GENUS, {72, 30, 30, 0} };void X(codelet_hf_10) (planner *p) {     X(khc2hc_register) (p, hf_10, &desc);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -