⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cfdft_10.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
	       Rm[WS(rs, 4)] = KP500000000 * (T1x + T1U);	       T1V = FNMS(KP250000000, T1U, T1x);	       T21 = FNMS(KP559016994, T1W, T1V);	       T1X = FMA(KP559016994, T1W, T1V);	       Rm[0] = KP500000000 * (FNMS(KP951056516, T20, T1X));	       Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T20, T1X));	       Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T22, T21));	       Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T22, T21));	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 10},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {68, 38, 54, 0} };void X(codelet_hc2cfdft_10) (planner *p) {     X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include hc2cf.h *//* * This function contains 122 FP additions, 68 FP multiplications, * (or, 92 additions, 38 multiplications, 30 fused multiply/add), * 62 stack variables, 5 constants, and 40 memory accesses */#include "hc2cf.h"static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP293892626, +0.293892626146236564584352977319536384298826219);     DK(KP475528258, +0.475528258147576786058219666689691071702849317);     DK(KP125000000, +0.125000000000000000000000000000000000000000000);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     DK(KP279508497, +0.279508497187473712051146708591409529430077295);     INT m;     for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(rs)) {	  E Tw, TL, TM, T1W, T1X, T27, T1Z, T20, T26, TX, T1a, T1b, T1d, T1e, T1f;	  E T1q, T1t, T1u, T1x, T1A, T1B, T1g, T1h, T1i, Td, T25, T1k, T1F;	  {	       E T3, T1D, T19, T1z, T7, Tb, TR, T1v, Tm, T1o, TK, T1s, Tv, T1p, T12;	       E T1y, TF, T1r, TW, T1w;	       {		    E T1, T2, T18, T14, T15, T16, T13, T17;		    T1 = Ip[0];		    T2 = Im[0];		    T18 = T1 + T2;		    T14 = Rm[0];		    T15 = Rp[0];		    T16 = T14 - T15;		    T3 = T1 - T2;		    T1D = T15 + T14;		    T13 = W[0];		    T17 = W[1];		    T19 = FNMS(T17, T18, T13 * T16);		    T1z = FMA(T17, T16, T13 * T18);	       }	       {		    E T5, T6, TO, T9, Ta, TQ, TN, TP;		    T5 = Ip[WS(rs, 2)];		    T6 = Im[WS(rs, 2)];		    TO = T5 - T6;		    T9 = Rp[WS(rs, 2)];		    Ta = Rm[WS(rs, 2)];		    TQ = T9 + Ta;		    T7 = T5 + T6;		    Tb = T9 - Ta;		    TN = W[6];		    TP = W[7];		    TR = FNMS(TP, TQ, TN * TO);		    T1v = FMA(TP, TO, TN * TQ);	       }	       {		    E Th, TJ, Tl, TH;		    {			 E Tf, Tg, Tj, Tk;			 Tf = Ip[WS(rs, 1)];			 Tg = Im[WS(rs, 1)];			 Th = Tf - Tg;			 TJ = Tf + Tg;			 Tj = Rp[WS(rs, 1)];			 Tk = Rm[WS(rs, 1)];			 Tl = Tj + Tk;			 TH = Tj - Tk;		    }		    {			 E Te, Ti, TG, TI;			 Te = W[2];			 Ti = W[3];			 Tm = FNMS(Ti, Tl, Te * Th);			 T1o = FMA(Te, Tl, Ti * Th);			 TG = W[4];			 TI = W[5];			 TK = FMA(TG, TH, TI * TJ);			 T1s = FNMS(TI, TH, TG * TJ);		    }	       }	       {		    E Tq, TZ, Tu, T11;		    {			 E To, Tp, Ts, Tt;			 To = Ip[WS(rs, 3)];			 Tp = Im[WS(rs, 3)];			 Tq = To + Tp;			 TZ = To - Tp;			 Ts = Rp[WS(rs, 3)];			 Tt = Rm[WS(rs, 3)];			 Tu = Ts - Tt;			 T11 = Ts + Tt;		    }		    {			 E Tn, Tr, TY, T10;			 Tn = W[13];			 Tr = W[12];			 Tv = FMA(Tn, Tq, Tr * Tu);			 T1p = FNMS(Tn, Tu, Tr * Tq);			 TY = W[10];			 T10 = W[11];			 T12 = FNMS(T10, T11, TY * TZ);			 T1y = FMA(T10, TZ, TY * T11);		    }	       }	       {		    E TA, TV, TE, TT;		    {			 E Ty, Tz, TC, TD;			 Ty = Ip[WS(rs, 4)];			 Tz = Im[WS(rs, 4)];			 TA = Ty - Tz;			 TV = Ty + Tz;			 TC = Rp[WS(rs, 4)];			 TD = Rm[WS(rs, 4)];			 TE = TC + TD;			 TT = TC - TD;		    }		    {			 E Tx, TB, TS, TU;			 Tx = W[14];			 TB = W[15];			 TF = FNMS(TB, TE, Tx * TA);			 T1r = FMA(Tx, TE, TB * TA);			 TS = W[16];			 TU = W[17];			 TW = FMA(TS, TT, TU * TV);			 T1w = FNMS(TU, TT, TS * TV);		    }	       }	       Tw = Tm - Tv;	       TL = TF - TK;	       TM = Tw + TL;	       T1W = T1v + T1w;	       T1X = T1y + T1z;	       T27 = T1W + T1X;	       T1Z = T1o + T1p;	       T20 = T1s + T1r;	       T26 = T1Z + T20;	       TX = TR - TW;	       T1a = T12 + T19;	       T1b = TX + T1a;	       T1d = T19 - T12;	       T1e = TR + TW;	       T1f = T1d - T1e;	       T1q = T1o - T1p;	       T1t = T1r - T1s;	       T1u = T1q + T1t;	       T1x = T1v - T1w;	       T1A = T1y - T1z;	       T1B = T1x + T1A;	       T1g = Tm + Tv;	       T1h = TK + TF;	       T1i = T1g + T1h;	       {		    E Tc, T1E, T4, T8;		    T4 = W[9];		    T8 = W[8];		    Tc = FMA(T4, T7, T8 * Tb);		    T1E = FNMS(T4, Tb, T8 * T7);		    Td = T3 - Tc;		    T25 = T1D + T1E;		    T1k = Tc + T3;		    T1F = T1D - T1E;	       }	  }	  {	       E T1U, T1c, T1T, T22, T24, T1Y, T21, T23, T1V;	       T1U = KP279508497 * (TM - T1b);	       T1c = TM + T1b;	       T1T = FNMS(KP125000000, T1c, KP500000000 * Td);	       T1Y = T1W - T1X;	       T21 = T1Z - T20;	       T22 = FNMS(KP293892626, T21, KP475528258 * T1Y);	       T24 = FMA(KP475528258, T21, KP293892626 * T1Y);	       Ip[0] = KP500000000 * (Td + T1c);	       T23 = T1U + T1T;	       Ip[WS(rs, 4)] = T23 + T24;	       Im[WS(rs, 3)] = T24 - T23;	       T1V = T1T - T1U;	       Ip[WS(rs, 2)] = T1V + T22;	       Im[WS(rs, 1)] = T22 - T1V;	  }	  {	       E T2a, T28, T29, T2e, T2g, T2c, T2d, T2f, T2b;	       T2a = KP279508497 * (T26 - T27);	       T28 = T26 + T27;	       T29 = FNMS(KP125000000, T28, KP500000000 * T25);	       T2c = TX - T1a;	       T2d = Tw - TL;	       T2e = FNMS(KP293892626, T2d, KP475528258 * T2c);	       T2g = FMA(KP475528258, T2d, KP293892626 * T2c);	       Rp[0] = KP500000000 * (T25 + T28);	       T2f = T2a + T29;	       Rp[WS(rs, 4)] = T2f - T2g;	       Rm[WS(rs, 3)] = T2g + T2f;	       T2b = T29 - T2a;	       Rp[WS(rs, 2)] = T2b - T2e;	       Rm[WS(rs, 1)] = T2e + T2b;	  }	  {	       E T1M, T1j, T1L, T1Q, T1S, T1O, T1P, T1R, T1N;	       T1M = KP279508497 * (T1i + T1f);	       T1j = T1f - T1i;	       T1L = FMA(KP500000000, T1k, KP125000000 * T1j);	       T1O = T1A - T1x;	       T1P = T1q - T1t;	       T1Q = FNMS(KP475528258, T1P, KP293892626 * T1O);	       T1S = FMA(KP293892626, T1P, KP475528258 * T1O);	       Im[WS(rs, 4)] = KP500000000 * (T1j - T1k);	       T1R = T1L - T1M;	       Ip[WS(rs, 3)] = T1R + T1S;	       Im[WS(rs, 2)] = T1S - T1R;	       T1N = T1L + T1M;	       Ip[WS(rs, 1)] = T1N + T1Q;	       Im[0] = T1Q - T1N;	  }	  {	       E T1C, T1G, T1H, T1n, T1J, T1l, T1m, T1K, T1I;	       T1C = KP279508497 * (T1u - T1B);	       T1G = T1u + T1B;	       T1H = FNMS(KP125000000, T1G, KP500000000 * T1F);	       T1l = T1g - T1h;	       T1m = T1e + T1d;	       T1n = FMA(KP475528258, T1l, KP293892626 * T1m);	       T1J = FNMS(KP293892626, T1l, KP475528258 * T1m);	       Rm[WS(rs, 4)] = KP500000000 * (T1F + T1G);	       T1K = T1H - T1C;	       Rp[WS(rs, 3)] = T1J + T1K;	       Rm[WS(rs, 2)] = T1K - T1J;	       T1I = T1C + T1H;	       Rp[WS(rs, 1)] = T1n + T1I;	       Rm[0] = T1I - T1n;	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 10},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, {92, 38, 30, 0} };void X(codelet_hc2cfdft_10) (planner *p) {     X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -