⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hf_25.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 4 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:57:39 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2hc -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 25 -dit -name hf_25 -include hf.h *//* * This function contains 400 FP additions, 364 FP multiplications, * (or, 84 additions, 48 multiplications, 316 fused multiply/add), * 178 stack variables, 47 constants, and 100 memory accesses */#include "hf.h"static void hf_25(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP949179823, +0.949179823508441261575555465843363271711583843);     DK(KP860541664, +0.860541664367944677098261680920518816412804187);     DK(KP621716863, +0.621716863012209892444754556304102309693593202);     DK(KP614372930, +0.614372930789563808870829930444362096004872855);     DK(KP557913902, +0.557913902031834264187699648465567037992437152);     DK(KP249506682, +0.249506682107067890488084201715862638334226305);     DK(KP560319534, +0.560319534973832390111614715371676131169633784);     DK(KP681693190, +0.681693190061530575150324149145440022633095390);     DK(KP906616052, +0.906616052148196230441134447086066874408359177);     DK(KP968479752, +0.968479752739016373193524836781420152702090879);     DK(KP845997307, +0.845997307939530944175097360758058292389769300);     DK(KP998026728, +0.998026728428271561952336806863450553336905220);     DK(KP994076283, +0.994076283785401014123185814696322018529298887);     DK(KP734762448, +0.734762448793050413546343770063151342619912334);     DK(KP772036680, +0.772036680810363904029489473607579825330539880);     DK(KP062914667, +0.062914667253649757225485955897349402364686947);     DK(KP833417178, +0.833417178328688677408962550243238843138996060);     DK(KP921177326, +0.921177326965143320250447435415066029359282231);     DK(KP541454447, +0.541454447536312777046285590082819509052033189);     DK(KP803003575, +0.803003575438660414833440593570376004635464850);     DK(KP943557151, +0.943557151597354104399655195398983005179443399);     DK(KP554608978, +0.554608978404018097464974850792216217022558774);     DK(KP242145790, +0.242145790282157779872542093866183953459003101);     DK(KP559154169, +0.559154169276087864842202529084232643714075927);     DK(KP683113946, +0.683113946453479238701949862233725244439656928);     DK(KP248028675, +0.248028675328619457762448260696444630363259177);     DK(KP968583161, +0.968583161128631119490168375464735813836012403);     DK(KP525970792, +0.525970792408939708442463226536226366643874659);     DK(KP726211448, +0.726211448929902658173535992263577167607493062);     DK(KP904730450, +0.904730450839922351881287709692877908104763647);     DK(KP831864738, +0.831864738706457140726048799369896829771167132);     DK(KP871714437, +0.871714437527667770979999223229522602943903653);     DK(KP549754652, +0.549754652192770074288023275540779861653779767);     DK(KP992114701, +0.992114701314477831049793042785778521453036709);     DK(KP939062505, +0.939062505817492352556001843133229685779824606);     DK(KP256756360, +0.256756360367726783319498520922669048172391148);     DK(KP851038619, +0.851038619207379630836264138867114231259902550);     DK(KP912575812, +0.912575812670962425556968549836277086778922727);     DK(KP912018591, +0.912018591466481957908415381764119056233607330);     DK(KP634619297, +0.634619297544148100711287640319130485732531031);     DK(KP470564281, +0.470564281212251493087595091036643380879947982);     DK(KP827271945, +0.827271945972475634034355757144307982555673741);     DK(KP126329378, +0.126329378446108174786050455341811215027378105);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     INT m;     for (m = mb, W = W + ((mb - 1) * 48); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 48, MAKE_VOLATILE_STRIDE(rs)) {	  E T7i, T6o, T6m, T7o, T7m, T7h, T6n, T6f, T7j, T7n;	  {	       E T6W, T5G, T3Y, T3M, T7q, T70, T6V, T7P, Tt, T3L, T5T, T45, T5Q, T4c, T3G;	       E T2G, T5P, T49, T5S, T42, T65, T4H, T68, T4A, T2Z, T11, T67, T4x, T64, T4E;	       E T5Y, T4W, T61, T4P, T3d, T1z, T60, T4M, T5X, T4T, T3g, T1G, T3q, T4q, T4j;	       E T26, T3i, T1M, T3k, T1S;	       {		    E T3u, T2e, T3E, T44, T4b, T2E, T3w, T2k, T3y, T2q;		    {			 E T1, T6R, T3P, T7, T3W, Tq, T9, Tc, Tb, T3U, Tk, T3Q, Ta;			 {			      E T3, T6, T2, T5;			      T1 = cr[0];			      T6R = ci[0];			      T3 = cr[WS(rs, 5)];			      T6 = ci[WS(rs, 5)];			      T2 = W[8];			      T5 = W[9];			      {				   E Tm, Tp, To, T3V, Tn, T3O, T4, Tl;				   Tm = cr[WS(rs, 15)];				   Tp = ci[WS(rs, 15)];				   T3O = T2 * T6;				   T4 = T2 * T3;				   Tl = W[28];				   To = W[29];				   T3P = FNMS(T5, T3, T3O);				   T7 = FMA(T5, T6, T4);				   T3V = Tl * Tp;				   Tn = Tl * Tm;				   {					E Tg, Tj, Tf, Ti, T3T, Th, T8;					Tg = cr[WS(rs, 10)];					Tj = ci[WS(rs, 10)];					T3W = FNMS(To, Tm, T3V);					Tq = FMA(To, Tp, Tn);					Tf = W[18];					Ti = W[19];					T9 = cr[WS(rs, 20)];					Tc = ci[WS(rs, 20)];					T3T = Tf * Tj;					Th = Tf * Tg;					T8 = W[38];					Tb = W[39];					T3U = FNMS(Ti, Tg, T3T);					Tk = FMA(Ti, Tj, Th);					T3Q = T8 * Tc;					Ta = T8 * T9;				   }			      }			 }			 {			      E T6T, T3X, T6Y, Tr, T3R, Td;			      T6T = T3U + T3W;			      T3X = T3U - T3W;			      T6Y = Tk - Tq;			      Tr = Tk + Tq;			      T3R = FNMS(Tb, T9, T3Q);			      Td = FMA(Tb, Tc, Ta);			      {				   E T3S, T6Z, Te, T6U, T6S, Ts;				   T3S = T3P - T3R;				   T6S = T3P + T3R;				   T6Z = T7 - Td;				   Te = T7 + Td;				   T6W = T6S - T6T;				   T6U = T6S + T6T;				   T5G = FNMS(KP618033988, T3S, T3X);				   T3Y = FMA(KP618033988, T3X, T3S);				   T3M = Te - Tr;				   Ts = Te + Tr;				   T7q = FMA(KP618033988, T6Y, T6Z);				   T70 = FNMS(KP618033988, T6Z, T6Y);				   T6V = FNMS(KP250000000, T6U, T6R);				   T7P = T6U + T6R;				   Tt = T1 + Ts;				   T3L = FNMS(KP250000000, Ts, T1);			      }			 }		    }		    {			 E T2g, T2j, T2m, T3v, T2h, T2p, T2l, T2i, T2o, T3x, T2n;			 {			      E T2a, T2d, T29, T2c;			      T2a = cr[WS(rs, 3)];			      T2d = ci[WS(rs, 3)];			      T29 = W[4];			      T2c = W[5];			      {				   E T2t, T2w, T2z, T3A, T2u, T2C, T2y, T2v, T2B, T3t, T2b, T2s, T2f;				   T2t = cr[WS(rs, 13)];				   T2w = ci[WS(rs, 13)];				   T3t = T29 * T2d;				   T2b = T29 * T2a;				   T2s = W[24];				   T2z = cr[WS(rs, 18)];				   T3u = FNMS(T2c, T2a, T3t);				   T2e = FMA(T2c, T2d, T2b);				   T3A = T2s * T2w;				   T2u = T2s * T2t;				   T2C = ci[WS(rs, 18)];				   T2y = W[34];				   T2v = W[25];				   T2B = W[35];				   {					E T3B, T2x, T3D, T2D, T3C, T2A;					T2g = cr[WS(rs, 8)];					T3C = T2y * T2C;					T2A = T2y * T2z;					T3B = FNMS(T2v, T2t, T3A);					T2x = FMA(T2v, T2w, T2u);					T3D = FNMS(T2B, T2z, T3C);					T2D = FMA(T2B, T2C, T2A);					T2j = ci[WS(rs, 8)];					T2f = W[14];					T3E = T3B + T3D;					T44 = T3D - T3B;					T4b = T2x - T2D;					T2E = T2x + T2D;				   }				   T2m = cr[WS(rs, 23)];				   T3v = T2f * T2j;				   T2h = T2f * T2g;				   T2p = ci[WS(rs, 23)];				   T2l = W[44];				   T2i = W[15];				   T2o = W[45];			      }			 }			 T3x = T2l * T2p;			 T2n = T2l * T2m;			 T3w = FNMS(T2i, T2g, T3v);			 T2k = FMA(T2i, T2j, T2h);			 T3y = FNMS(T2o, T2m, T3x);			 T2q = FMA(T2o, T2p, T2n);		    }		    {			 E T2N, Tz, T2X, T4G, T4z, TZ, T2P, TF, T2R, TL;			 {			      E TB, TE, TH, T2O, TC, TK, TG, TD, TJ, T2Q, TI;			      {				   E Tv, Ty, Tu, Tx;				   {					E T48, T41, T47, T40, T43, T3z;					Tv = cr[WS(rs, 1)];					T43 = T3y - T3w;					T3z = T3w + T3y;					{					     E T4a, T2r, T3F, T2F;					     T4a = T2k - T2q;					     T2r = T2k + T2q;					     T5T = FNMS(KP618033988, T43, T44);					     T45 = FMA(KP618033988, T44, T43);					     T3F = T3z + T3E;					     T48 = T3E - T3z;					     T5Q = FNMS(KP618033988, T4a, T4b);					     T4c = FMA(KP618033988, T4b, T4a);					     T2F = T2r + T2E;					     T41 = T2E - T2r;					     T3G = T3u + T3F;					     T47 = FNMS(KP250000000, T3F, T3u);					     T2G = T2e + T2F;					     T40 = FNMS(KP250000000, T2F, T2e);					     Ty = ci[WS(rs, 1)];					}					T5P = FMA(KP559016994, T48, T47);					T49 = FNMS(KP559016994, T48, T47);					T5S = FMA(KP559016994, T41, T40);					T42 = FNMS(KP559016994, T41, T40);					Tu = W[0];				   }				   Tx = W[1];				   {					E TO, TR, TU, T2T, TP, TX, TT, TQ, TW, T2M, Tw, TN, TA;					TO = cr[WS(rs, 11)];					TR = ci[WS(rs, 11)];					T2M = Tu * Ty;					Tw = Tu * Tv;					TN = W[20];					TU = cr[WS(rs, 16)];					T2N = FNMS(Tx, Tv, T2M);					Tz = FMA(Tx, Ty, Tw);					T2T = TN * TR;					TP = TN * TO;					TX = ci[WS(rs, 16)];					TT = W[30];					TQ = W[21];					TW = W[31];					{					     E T2U, TS, T2W, TY, T2V, TV;					     TB = cr[WS(rs, 6)];					     T2V = TT * TX;					     TV = TT * TU;					     T2U = FNMS(TQ, TO, T2T);					     TS = FMA(TQ, TR, TP);					     T2W = FNMS(TW, TU, T2V);					     TY = FMA(TW, TX, TV);					     TE = ci[WS(rs, 6)];					     TA = W[10];					     T2X = T2U + T2W;					     T4G = T2W - T2U;					     T4z = TY - TS;					     TZ = TS + TY;					}					TH = cr[WS(rs, 21)];					T2O = TA * TE;					TC = TA * TB;					TK = ci[WS(rs, 21)];					TG = W[40];					TD = W[11];					TJ = W[41];				   }			      }			      T2Q = TG * TK;			      TI = TG * TH;			      T2P = FNMS(TD, TB, T2O);			      TF = FMA(TD, TE, TC);			      T2R = FNMS(TJ, TH, T2Q);			      TL = FMA(TJ, TK, TI);			 }			 {			      E T31, T17, T3b, T4V, T4O, T1x, T33, T1d, T35, T1j;			      {				   E T19, T1c, T1f, T32, T1a, T1i, T1e, T1b, T1h, T34, T1g;				   {					E T13, T16, T12, T15;					{					     E T4w, T4D, T4v, T4C, T4F, T2S;					     T13 = cr[WS(rs, 4)];					     T4F = T2P - T2R;					     T2S = T2P + T2R;					     {						  E T4y, TM, T2Y, T10;						  T4y = TL - TF;						  TM = TF + TL;						  T65 = FMA(KP618033988, T4F, T4G);						  T4H = FNMS(KP618033988, T4G, T4F);						  T2Y = T2S + T2X;						  T4w = T2S - T2X;						  T68 = FNMS(KP618033988, T4y, T4z);						  T4A = FMA(KP618033988, T4z, T4y);						  T10 = TM + TZ;						  T4D = TM - TZ;						  T2Z = T2N + T2Y;						  T4v = FNMS(KP250000000, T2Y, T2N);						  T11 = Tz + T10;						  T4C = FNMS(KP250000000, T10, Tz);						  T16 = ci[WS(rs, 4)];					     }					     T67 = FNMS(KP559016994, T4w, T4v);					     T4x = FMA(KP559016994, T4w, T4v);					     T64 = FNMS(KP559016994, T4D, T4C);					     T4E = FMA(KP559016994, T4D, T4C);					     T12 = W[6];					}					T15 = W[7];					{					     E T1m, T1p, T1s, T37, T1n, T1v, T1r, T1o, T1u, T30, T14, T1l, T18;					     T1m = cr[WS(rs, 14)];					     T1p = ci[WS(rs, 14)];					     T30 = T12 * T16;					     T14 = T12 * T13;					     T1l = W[26];					     T1s = cr[WS(rs, 19)];					     T31 = FNMS(T15, T13, T30);					     T17 = FMA(T15, T16, T14);					     T37 = T1l * T1p;					     T1n = T1l * T1m;					     T1v = ci[WS(rs, 19)];					     T1r = W[36];					     T1o = W[27];					     T1u = W[37];					     {						  E T38, T1q, T3a, T1w, T39, T1t;						  T19 = cr[WS(rs, 9)];						  T39 = T1r * T1v;						  T1t = T1r * T1s;						  T38 = FNMS(T1o, T1m, T37);						  T1q = FMA(T1o, T1p, T1n);						  T3a = FNMS(T1u, T1s, T39);						  T1w = FMA(T1u, T1v, T1t);						  T1c = ci[WS(rs, 9)];						  T18 = W[16];						  T3b = T38 + T3a;						  T4V = T3a - T38;						  T4O = T1w - T1q;						  T1x = T1q + T1w;					     }					     T1f = cr[WS(rs, 24)];					     T32 = T18 * T1c;					     T1a = T18 * T19;					     T1i = ci[WS(rs, 24)];					     T1e = W[46];					     T1b = W[17];					     T1h = W[47];					}				   }				   T34 = T1e * T1i;				   T1g = T1e * T1f;				   T33 = FNMS(T1b, T19, T32);				   T1d = FMA(T1b, T1c, T1a);				   T35 = FNMS(T1h, T1f, T34);				   T1j = FMA(T1h, T1i, T1g);			      }			      {				   E T1I, T1L, T1O, T3h, T1J, T1R, T1N, T1K, T1Q, T3j, T1P;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -