⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hf_16.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
	  ci[WS(rs, 2)] = FMA(KP923879532, T2T, T2Q);	  cr[WS(rs, 5)] = FNMS(KP923879532, T2T, T2Q);     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 16},     {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 16, "hf_16", twinstr, &GENUS, {104, 30, 70, 0} };void X(codelet_hf_16) (planner *p) {     X(khc2hc_register) (p, hf_16, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hf_16 -include hf.h *//* * This function contains 174 FP additions, 84 FP multiplications, * (or, 136 additions, 46 multiplications, 38 fused multiply/add), * 52 stack variables, 3 constants, and 64 memory accesses */#include "hf.h"static void hf_16(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT m;     for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 30, MAKE_VOLATILE_STRIDE(rs)) {	  E T7, T38, T1t, T2U, Ti, T37, T1w, T2R, Tu, T2t, T1C, T2c, TF, T2s, T1H;	  E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2k, T24, T2j, TS, T13, T2w, T2x;	  E T2y, T2z, T1O, T2h, T1T, T2g;	  {	       E T1, T2T, T6, T2S;	       T1 = cr[0];	       T2T = ci[0];	       {		    E T3, T5, T2, T4;		    T3 = cr[WS(rs, 8)];		    T5 = ci[WS(rs, 8)];		    T2 = W[14];		    T4 = W[15];		    T6 = FMA(T2, T3, T4 * T5);		    T2S = FNMS(T4, T3, T2 * T5);	       }	       T7 = T1 + T6;	       T38 = T2T - T2S;	       T1t = T1 - T6;	       T2U = T2S + T2T;	  }	  {	       E Tc, T1u, Th, T1v;	       {		    E T9, Tb, T8, Ta;		    T9 = cr[WS(rs, 4)];		    Tb = ci[WS(rs, 4)];		    T8 = W[6];		    Ta = W[7];		    Tc = FMA(T8, T9, Ta * Tb);		    T1u = FNMS(Ta, T9, T8 * Tb);	       }	       {		    E Te, Tg, Td, Tf;		    Te = cr[WS(rs, 12)];		    Tg = ci[WS(rs, 12)];		    Td = W[22];		    Tf = W[23];		    Th = FMA(Td, Te, Tf * Tg);		    T1v = FNMS(Tf, Te, Td * Tg);	       }	       Ti = Tc + Th;	       T37 = Tc - Th;	       T1w = T1u - T1v;	       T2R = T1u + T1v;	  }	  {	       E To, T1z, Tt, T1A, T1y, T1B;	       {		    E Tl, Tn, Tk, Tm;		    Tl = cr[WS(rs, 2)];		    Tn = ci[WS(rs, 2)];		    Tk = W[2];		    Tm = W[3];		    To = FMA(Tk, Tl, Tm * Tn);		    T1z = FNMS(Tm, Tl, Tk * Tn);	       }	       {		    E Tq, Ts, Tp, Tr;		    Tq = cr[WS(rs, 10)];		    Ts = ci[WS(rs, 10)];		    Tp = W[18];		    Tr = W[19];		    Tt = FMA(Tp, Tq, Tr * Ts);		    T1A = FNMS(Tr, Tq, Tp * Ts);	       }	       Tu = To + Tt;	       T2t = T1z + T1A;	       T1y = To - Tt;	       T1B = T1z - T1A;	       T1C = T1y - T1B;	       T2c = T1y + T1B;	  }	  {	       E Tz, T1E, TE, T1F, T1D, T1G;	       {		    E Tw, Ty, Tv, Tx;		    Tw = cr[WS(rs, 14)];		    Ty = ci[WS(rs, 14)];		    Tv = W[26];		    Tx = W[27];		    Tz = FMA(Tv, Tw, Tx * Ty);		    T1E = FNMS(Tx, Tw, Tv * Ty);	       }	       {		    E TB, TD, TA, TC;		    TB = cr[WS(rs, 6)];		    TD = ci[WS(rs, 6)];		    TA = W[10];		    TC = W[11];		    TE = FMA(TA, TB, TC * TD);		    T1F = FNMS(TC, TB, TA * TD);	       }	       TF = Tz + TE;	       T2s = T1E + T1F;	       T1D = Tz - TE;	       T1G = T1E - T1F;	       T1H = T1D + T1G;	       T2d = T1D - T1G;	  }	  {	       E T19, T1V, T1p, T22, T1e, T1W, T1k, T21;	       {		    E T16, T18, T15, T17;		    T16 = cr[WS(rs, 15)];		    T18 = ci[WS(rs, 15)];		    T15 = W[28];		    T17 = W[29];		    T19 = FMA(T15, T16, T17 * T18);		    T1V = FNMS(T17, T16, T15 * T18);	       }	       {		    E T1m, T1o, T1l, T1n;		    T1m = cr[WS(rs, 11)];		    T1o = ci[WS(rs, 11)];		    T1l = W[20];		    T1n = W[21];		    T1p = FMA(T1l, T1m, T1n * T1o);		    T22 = FNMS(T1n, T1m, T1l * T1o);	       }	       {		    E T1b, T1d, T1a, T1c;		    T1b = cr[WS(rs, 7)];		    T1d = ci[WS(rs, 7)];		    T1a = W[12];		    T1c = W[13];		    T1e = FMA(T1a, T1b, T1c * T1d);		    T1W = FNMS(T1c, T1b, T1a * T1d);	       }	       {		    E T1h, T1j, T1g, T1i;		    T1h = cr[WS(rs, 3)];		    T1j = ci[WS(rs, 3)];		    T1g = W[4];		    T1i = W[5];		    T1k = FMA(T1g, T1h, T1i * T1j);		    T21 = FNMS(T1i, T1h, T1g * T1j);	       }	       T1f = T19 + T1e;	       T1q = T1k + T1p;	       T2B = T1f - T1q;	       T2C = T1V + T1W;	       T2D = T21 + T22;	       T2E = T2C - T2D;	       {		    E T1X, T1Y, T20, T23;		    T1X = T1V - T1W;		    T1Y = T1k - T1p;		    T1Z = T1X + T1Y;		    T2k = T1X - T1Y;		    T20 = T19 - T1e;		    T23 = T21 - T22;		    T24 = T20 - T23;		    T2j = T20 + T23;	       }	  }	  {	       E TM, T1P, T12, T1M, TR, T1Q, TX, T1L;	       {		    E TJ, TL, TI, TK;		    TJ = cr[WS(rs, 1)];		    TL = ci[WS(rs, 1)];		    TI = W[0];		    TK = W[1];		    TM = FMA(TI, TJ, TK * TL);		    T1P = FNMS(TK, TJ, TI * TL);	       }	       {		    E TZ, T11, TY, T10;		    TZ = cr[WS(rs, 13)];		    T11 = ci[WS(rs, 13)];		    TY = W[24];		    T10 = W[25];		    T12 = FMA(TY, TZ, T10 * T11);		    T1M = FNMS(T10, TZ, TY * T11);	       }	       {		    E TO, TQ, TN, TP;		    TO = cr[WS(rs, 9)];		    TQ = ci[WS(rs, 9)];		    TN = W[16];		    TP = W[17];		    TR = FMA(TN, TO, TP * TQ);		    T1Q = FNMS(TP, TO, TN * TQ);	       }	       {		    E TU, TW, TT, TV;		    TU = cr[WS(rs, 5)];		    TW = ci[WS(rs, 5)];		    TT = W[8];		    TV = W[9];		    TX = FMA(TT, TU, TV * TW);		    T1L = FNMS(TV, TU, TT * TW);	       }	       TS = TM + TR;	       T13 = TX + T12;	       T2w = TS - T13;	       T2x = T1P + T1Q;	       T2y = T1L + T1M;	       T2z = T2x - T2y;	       {		    E T1K, T1N, T1R, T1S;		    T1K = TM - TR;		    T1N = T1L - T1M;		    T1O = T1K - T1N;		    T2h = T1K + T1N;		    T1R = T1P - T1Q;		    T1S = TX - T12;		    T1T = T1R + T1S;		    T2g = T1R - T1S;	       }	  }	  {	       E T1J, T27, T3a, T3c, T26, T3b, T2a, T35;	       {		    E T1x, T1I, T36, T39;		    T1x = T1t - T1w;		    T1I = KP707106781 * (T1C + T1H);		    T1J = T1x + T1I;		    T27 = T1x - T1I;		    T36 = KP707106781 * (T2c - T2d);		    T39 = T37 + T38;		    T3a = T36 + T39;		    T3c = T39 - T36;	       }	       {		    E T1U, T25, T28, T29;		    T1U = FNMS(KP382683432, T1T, KP923879532 * T1O);		    T25 = FMA(KP382683432, T1Z, KP923879532 * T24);		    T26 = T1U + T25;		    T3b = T25 - T1U;		    T28 = FMA(KP923879532, T1T, KP382683432 * T1O);		    T29 = FNMS(KP923879532, T1Z, KP382683432 * T24);		    T2a = T28 + T29;		    T35 = T29 - T28;	       }	       cr[WS(rs, 7)] = T1J - T26;	       cr[WS(rs, 11)] = T3b - T3c;	       ci[WS(rs, 12)] = T3b + T3c;	       ci[0] = T1J + T26;	       ci[WS(rs, 4)] = T27 - T2a;	       cr[WS(rs, 15)] = T35 - T3a;	       ci[WS(rs, 8)] = T35 + T3a;	       cr[WS(rs, 3)] = T27 + T2a;	  }	  {	       E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P;	       {		    E Tj, TG, T2Q, T2V;		    Tj = T7 + Ti;		    TG = Tu + TF;		    TH = Tj + TG;		    T2L = Tj - TG;		    T2Q = T2t + T2s;		    T2V = T2R + T2U;		    T2W = T2Q + T2V;		    T2Y = T2V - T2Q;	       }	       {		    E T14, T1r, T2M, T2N;		    T14 = TS + T13;		    T1r = T1f + T1q;		    T1s = T14 + T1r;		    T2X = T1r - T14;		    T2M = T2C + T2D;		    T2N = T2x + T2y;		    T2O = T2M - T2N;		    T2P = T2N + T2M;	       }	       ci[WS(rs, 7)] = TH - T1s;	       cr[WS(rs, 12)] = T2X - T2Y;	       ci[WS(rs, 11)] = T2X + T2Y;	       cr[0] = TH + T1s;	       cr[WS(rs, 4)] = T2L - T2O;	       cr[WS(rs, 8)] = T2P - T2W;	       ci[WS(rs, 15)] = T2P + T2W;	       ci[WS(rs, 3)] = T2L + T2O;	  }	  {	       E T2f, T2n, T3g, T3i, T2m, T3h, T2q, T3d;	       {		    E T2b, T2e, T3e, T3f;		    T2b = T1t + T1w;		    T2e = KP707106781 * (T2c + T2d);		    T2f = T2b + T2e;		    T2n = T2b - T2e;		    T3e = KP707106781 * (T1H - T1C);		    T3f = T38 - T37;		    T3g = T3e + T3f;		    T3i = T3f - T3e;	       }	       {		    E T2i, T2l, T2o, T2p;		    T2i = FMA(KP382683432, T2g, KP923879532 * T2h);		    T2l = FNMS(KP382683432, T2k, KP923879532 * T2j);		    T2m = T2i + T2l;		    T3h = T2l - T2i;		    T2o = FNMS(KP923879532, T2g, KP382683432 * T2h);		    T2p = FMA(KP923879532, T2k, KP382683432 * T2j);		    T2q = T2o + T2p;		    T3d = T2p - T2o;	       }	       ci[WS(rs, 6)] = T2f - T2m;	       cr[WS(rs, 13)] = T3h - T3i;	       ci[WS(rs, 10)] = T3h + T3i;	       cr[WS(rs, 1)] = T2f + T2m;	       cr[WS(rs, 5)] = T2n - T2q;	       cr[WS(rs, 9)] = T3d - T3g;	       ci[WS(rs, 14)] = T3d + T3g;	       ci[WS(rs, 2)] = T2n + T2q;	  }	  {	       E T2v, T2H, T32, T34, T2G, T2Z, T2K, T33;	       {		    E T2r, T2u, T30, T31;		    T2r = T7 - Ti;		    T2u = T2s - T2t;		    T2v = T2r - T2u;		    T2H = T2r + T2u;		    T30 = Tu - TF;		    T31 = T2U - T2R;		    T32 = T30 + T31;		    T34 = T31 - T30;	       }	       {		    E T2A, T2F, T2I, T2J;		    T2A = T2w + T2z;		    T2F = T2B - T2E;		    T2G = KP707106781 * (T2A + T2F);		    T2Z = KP707106781 * (T2F - T2A);		    T2I = T2w - T2z;		    T2J = T2B + T2E;		    T2K = KP707106781 * (T2I + T2J);		    T33 = KP707106781 * (T2J - T2I);	       }	       ci[WS(rs, 5)] = T2v - T2G;	       cr[WS(rs, 10)] = T33 - T34;	       ci[WS(rs, 13)] = T33 + T34;	       cr[WS(rs, 2)] = T2v + T2G;	       cr[WS(rs, 6)] = T2H - T2K;	       cr[WS(rs, 14)] = T2Z - T32;	       ci[WS(rs, 9)] = T2Z + T32;	       ci[WS(rs, 1)] = T2H + T2K;	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 16},     {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 16, "hf_16", twinstr, &GENUS, {136, 46, 38, 0} };void X(codelet_hf_16) (planner *p) {     X(khc2hc_register) (p, hf_16, &desc);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -