📄 hc2cfdft2_20.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:04:17 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hc2cfdft2_20 -include hc2cf.h *//* * This function contains 316 FP additions, 238 FP multiplications, * (or, 176 additions, 98 multiplications, 140 fused multiply/add), * 180 stack variables, 5 constants, and 80 memory accesses */#include "hc2cf.h"static void hc2cfdft2_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP500000000, +0.500000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) { E T5h, T5C, T5E, T5y, T5w, T5x, T5D, T5z; { E Tm, Tq, Tn, T1, T6, Tg, Tp, Tb, T1i, TU, Tr, TW, Tx, T2B, T1A; E T1u, T2y, T33, T26, T1o, T30, T22, TD, T1Q, T2a, T2e, T2V, T2R, TG, T1V; E TV, TH, TN, T2t, T12, T2p; { E Tw, To, T29, T1h, T1n, T2d, TC, T2U; Tm = W[0]; Tq = W[3]; Tn = W[2]; T1 = W[6]; T6 = W[7]; Tw = Tm * Tq; To = Tm * Tn; T29 = Tm * T1; T1h = Tn * T1; T1n = Tn * T6; T2d = Tm * T6; Tg = W[5]; Tp = W[1]; Tb = W[4]; { E T21, T25, T1t, T1z; T1i = FMA(Tq, T6, T1h); T25 = Tm * Tg; T1z = Tn * Tg; TU = FMA(Tp, Tq, To); Tr = FNMS(Tp, Tq, To); TW = FNMS(Tp, Tn, Tw); Tx = FMA(Tp, Tn, Tw); T1t = Tn * Tb; T21 = Tm * Tb; T2B = FMA(Tq, Tb, T1z); T1A = FNMS(Tq, Tb, T1z); TC = Tr * Tb; T1u = FMA(Tq, Tg, T1t); T2y = FNMS(Tq, Tg, T1t); T33 = FMA(Tp, Tb, T25); T26 = FNMS(Tp, Tb, T25); T1o = FNMS(Tq, T1, T1n); T30 = FNMS(Tp, Tg, T21); T22 = FMA(Tp, Tg, T21); } TD = FMA(Tx, Tg, TC); T1Q = FNMS(Tx, Tg, TC); T2a = FMA(Tp, T6, T29); T2e = FNMS(Tp, T1, T2d); T2U = Tr * T6; { E T2Q, TE, TM, TF; T2Q = Tr * T1; TF = Tr * Tg; T2V = FNMS(Tx, T1, T2U); T2R = FMA(Tx, T6, T2Q); TG = FNMS(Tx, Tb, TF); T1V = FMA(Tx, Tb, TF); TE = TD * T1; TM = TD * T6; TV = TU * Tb; TH = FMA(TG, T6, TE); TN = FNMS(TG, T1, TM); T2t = TU * T1; T12 = TU * Tg; T2p = TU * T6; } } { E T36, T3Q, T5f, T4D, T5g, T2Y, T4E, T3P, T5R, T5k, T39, TT, T3T, T3m, T49; E T4X, T5T, T5r, T3c, T2i, T3W, T3B, T4o, T4U, T5U, T5u, T3d, T2J, T3X, T3I; E T4v, T4V, T5Q, T5n, T3a, T1G, T3U, T3t, T4g, T4Y; { E T13, T2m, T2q, T2u, T2f, T9, T2O, TA, T2c, T4k, T3i, T5, T2Z, T1e, T2G; E T1O, T2W, TQ, T2C, T1Y, T3v, T27, Tj, T1l, T2v, T3g, T1m, T1D, T2n, T1x; E T2k, T3E, T4c, T2l, T1y, T10, T31, T16, T34, T32, T11, T4B, T3p, T4A, T1T; E T3n, T1b, T2A, T4q, T1U, Te, Tf, T24, T4i, T1r, T4a, T3C, T2s, T43, Tv; E T3L, T2N, T45, TL, T3N, T2T, T2E, T1K; { E T2j, TX, T1B, T1C; { E T1c, T1d, T1M, T1N; { E T2, T3, T7, T8; T7 = Rp[WS(rs, 9)]; T8 = Rm[WS(rs, 9)]; T2 = Ip[WS(rs, 9)]; T2j = FMA(TW, Tg, TV); TX = FNMS(TW, Tg, TV); T13 = FMA(TW, Tb, T12); T2m = FNMS(TW, Tb, T12); T2q = FNMS(TW, T1, T2p); T2u = FMA(TW, T6, T2t); T2f = T7 + T8; T9 = T7 - T8; T3 = Im[WS(rs, 9)]; { E Ty, Tz, T2b, T4; Ty = Rp[WS(rs, 2)]; Tz = Rm[WS(rs, 2)]; T1c = Ip[0]; T2b = T2 - T3; T4 = T2 + T3; T2O = Ty - Tz; TA = Ty + Tz; T2c = T2a * T2b; T4k = T2e * T2b; T3i = T6 * T4; T5 = T1 * T4; T1d = Im[0]; T1M = Rp[WS(rs, 1)]; T1N = Rm[WS(rs, 1)]; } } { E TO, TP, T1W, T1X; TO = Rp[WS(rs, 7)]; T2Z = T1c - T1d; T1e = T1c + T1d; T2G = T1M + T1N; T1O = T1M - T1N; TP = Rm[WS(rs, 7)]; T1W = Rm[WS(rs, 6)]; T1X = Rp[WS(rs, 6)]; { E Th, Ti, T1j, T1k; Th = Rm[WS(rs, 4)]; T2W = TO - TP; TQ = TO + TP; T2C = T1X + T1W; T1Y = T1W - T1X; Ti = Rp[WS(rs, 4)]; T1j = Ip[WS(rs, 8)]; T1k = Im[WS(rs, 8)]; T3v = T1Q * T1Y; T27 = Ti + Th; Tj = Th - Ti; T1l = T1j - T1k; T2v = T1j + T1k; T1B = Rp[WS(rs, 3)]; T3g = Tb * Tj; T1m = T1i * T1l; T1C = Rm[WS(rs, 3)]; } } } { E T18, T19, T1R, T1S; { E TY, TZ, T1v, T1w, T14, T15; T1v = Ip[WS(rs, 3)]; T1w = Im[WS(rs, 3)]; TY = Ip[WS(rs, 5)]; T1D = T1B + T1C; T2n = T1B - T1C; T1x = T1v - T1w; T2k = T1v + T1w; T3E = T2j * T2n; T4c = T1u * T1D; T2l = T2j * T2k; T1y = T1u * T1x; TZ = Im[WS(rs, 5)]; T14 = Rp[WS(rs, 5)]; T15 = Rm[WS(rs, 5)]; T18 = Rm[0]; T10 = TY + TZ; T31 = TY - TZ; T16 = T14 - T15; T34 = T14 + T15; T32 = T30 * T31; T11 = TX * T10; T4B = T30 * T34; T3p = TX * T16; T19 = Rp[0]; T1R = Ip[WS(rs, 6)]; T1S = Im[WS(rs, 6)]; } { E T2r, T23, T1p, T1q; { E Tc, T1a, T2z, Td; Tc = Ip[WS(rs, 4)]; T1a = T18 - T19; T4A = T19 + T18; T1T = T1R + T1S; T2z = T1R - T1S; Td = Im[WS(rs, 4)]; T3n = Tm * T1a; T1b = Tp * T1a; T2A = T2y * T2z; T4q = T2B * T2z; T1U = T1Q * T1T; T23 = Tc - Td; Te = Tc + Td; } T1p = Rp[WS(rs, 8)]; T1q = Rm[WS(rs, 8)]; Tf = Tb * Te; T24 = T22 * T23; T4i = T26 * T23; T1r = T1p + T1q; T2r = T1q - T1p; { E T2M, Tu, Ts, Tt; Ts = Ip[WS(rs, 2)]; Tt = Im[WS(rs, 2)]; T4a = T1i * T1r; T3C = T2u * T2r; T2s = T2q * T2r; T2M = Ts + Tt; Tu = Ts - Tt; { E T2S, TK, TI, TJ, T1I, T1J; TI = Ip[WS(rs, 7)]; TJ = Im[WS(rs, 7)]; T43 = Tx * Tu; Tv = Tr * Tu; T3L = TG * T2M; T2N = TD * T2M; T2S = TI + TJ; TK = TI - TJ; T1I = Ip[WS(rs, 1)]; T1J = Im[WS(rs, 1)]; T45 = TN * TK; TL = TH * TK; T3N = T2V * T2S; T2T = T2R * T2S; T2E = T1I - T1J; T1K = T1I + T1J; } } } } } { E T3x, T1L, T2F, T4s, T2P, T2X, T3M, T3O, T35, T4C; T35 = FNMS(T33, T34, T32); T4C = FMA(T33, T31, T4B); T3x = Tq * T1K; T1L = Tn * T1K; T2F = TU * T2E; T4s = TW * T2E; T36 = T2Z - T35; T3Q = T35 + T2Z; T5f = T4A + T4C; T4D = T4A - T4C; T2P = FNMS(TG, T2O, T2N); T2X = FNMS(T2V, T2W, T2T); T3M = FMA(TD, T2O, T3L); T3O = FMA(T2R, T2W, T3N); { E TB, T5j, Tl, T5i, T47, TR, T3h, T3j; { E Ta, Tk, T44, T46; Ta = FNMS(T6, T9, T5); T5g = T2P + T2X; T2Y = T2P - T2X; T4E = T3O - T3M; T3P = T3M + T3O; Tk = FMA(Tg, Tj, Tf); T44 = FMA(Tr, TA, T43); T46 = FMA(TH, TQ, T45); TB = FNMS(Tx, TA, Tv); T5j = Tk + Ta; Tl = Ta - Tk; T5i = T44 + T46; T47 = T44 - T46; TR = FNMS(TN, TQ, TL); T3h = FNMS(Tg, Te, T3g); T3j = FMA(T1, T9, T3i); } { E T3l, T48, T3k, TS; T5R = T5i - T5j; T5k = T5i + T5j; T3l = TB + TR; TS = TB - TR; T48 = T3h + T3j; T3k = T3h - T3j; T39 = TS + Tl; TT = Tl - TS; T3T = T3l + T3k; T3m = T3k - T3l; T49 = T47 + T48; T4X = T47 - T48; } } { E T28, T5q, T20, T5p, T4m, T2g, T3w, T3y; { E T1P, T1Z, T4j, T4l; T1P = FNMS(Tq, T1O, T1L); T1Z = FMA(T1V, T1Y, T1U); T4j = FMA(T22, T27, T4i); T4l = FMA(T2a, T2f, T4k); T28 = FNMS(T26, T27, T24); T5q = T1Z + T1P; T20 = T1P - T1Z; T5p = T4j + T4l; T4m = T4j - T4l; T2g = FNMS(T2e, T2f, T2c); T3w = FNMS(T1V, T1T, T3v); T3y = FMA(Tn, T1O, T3x); } { E T3A, T4n, T3z, T2h; T5T = T5p - T5q; T5r = T5p + T5q; T3A = T28 + T2g; T2h = T28 - T2g; T4n = T3w + T3y; T3z = T3w - T3y; T3c = T2h + T20; T2i = T20 - T2h; T3W = T3A + T3z; T3B = T3z - T3A; T4o = T4m + T4n; T4U = T4m - T4n; } } { E T2D, T5s, T2x, T5t, T4u, T2H, T3D, T3F; { E T2o, T2w, T4r, T4t; T2o = FNMS(T2m, T2n, T2l); T2w = FMA(T2u, T2v, T2s); T4r = FMA(T2y, T2C, T4q); T4t = FMA(TU, T2G, T4s); T2D = FNMS(T2B, T2C, T2A); T5s = T2w + T2o; T2x = T2o - T2w; T5t = T4r + T4t; T4u = T4r - T4t; T2H = FNMS(TW, T2G, T2F); T3D = FNMS(T2q, T2v, T3C); T3F = FMA(T2m, T2k, T3E); } { E T3H, T4p, T3G, T2I; T5U = T5t - T5s; T5u = T5s + T5t; T3H = T2D + T2H; T2I = T2D - T2H; T4p = T3D + T3F; T3G = T3D - T3F; T3d = T2x + T2I; T2J = T2x - T2I; T3X = T3G + T3H; T3I = T3G - T3H; T4v = T4p + T4u; T4V = T4u - T4p; } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -