📄 hf2_20.c
字号:
ci[WS(rs, 11)] = FMA(KP951056516, T54, T51); cr[WS(rs, 12)] = FMS(KP951056516, T54, T51); ci[WS(rs, 15)] = FMA(KP951056516, T56, T55); cr[WS(rs, 16)] = FMS(KP951056516, T56, T55); T5q = T5l - T5m; T5n = T5l + T5m; } } } } } cr[WS(rs, 15)] = T5n - T5o; T5p = FMA(KP250000000, T5n, T5o); T5v = FMA(KP559016994, T5q, T5p); T5r = FNMS(KP559016994, T5q, T5p); cr[WS(rs, 19)] = -(FMA(KP951056516, T5u, T5r)); cr[WS(rs, 11)] = FMS(KP951056516, T5u, T5r); ci[WS(rs, 16)] = FNMS(KP951056516, T5w, T5v); ci[WS(rs, 12)] = FMA(KP951056516, T5w, T5v); }}static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 19}, {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 20, "hf2_20", twinstr, &GENUS, {136, 58, 140, 0} };void X(codelet_hf2_20) (planner *p) { X(khc2hc_register) (p, hf2_20, &desc);}#else /* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2hc -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -dit -name hf2_20 -include hf.h *//* * This function contains 276 FP additions, 164 FP multiplications, * (or, 204 additions, 92 multiplications, 72 fused multiply/add), * 123 stack variables, 4 constants, and 80 memory accesses */#include "hf.h"static void hf2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP587785252, +0.587785252292473129168705954639072768597652438); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP559016994, +0.559016994374947424102293417182819058860154590); INT m; for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) { E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O; E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ; E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX; { E T7, T16, Ta, T13, T4, T17, Tb, T12; { E Th, Tn, Tj, Tm; T2 = W[0]; T5 = W[1]; Tg = W[2]; Ti = W[3]; Th = T2 * Tg; Tn = T5 * Tg; Tj = T5 * Ti; Tm = T2 * Ti; Tk = Th - Tj; To = Tm + Tn; T1h = Tm - Tn; T1f = Th + Tj; T6 = W[5]; T7 = T5 * T6; T16 = Tg * T6; Ta = T2 * T6; T13 = Ti * T6; T3 = W[4]; T4 = T2 * T3; T17 = Ti * T3; Tb = T5 * T3; T12 = Tg * T3; } T8 = T4 - T7; T14 = T12 + T13; T1Q = T16 + T17; Tc = Ta + Tb; T1O = T12 - T13; T1v = Ta - Tb; T18 = T16 - T17; T1t = T4 + T7; { E T1l, T1m, T1g, T1i; T1l = T1f * T6; T1m = T1h * T3; T1n = T1l + T1m; T24 = T1l - T1m; T1g = T1f * T3; T1i = T1h * T6; T1j = T1g - T1i; T22 = T1g + T1i; { E Tl, Tp, Ts, Tt; Tl = Tk * T3; Tp = To * T6; Tq = Tl + Tp; Ts = Tk * T6; Tt = To * T3; Tu = Ts - Tt; T1E = Tl - Tp; T1G = Ts + Tt; Tx = W[6]; Ty = W[7]; Tz = FMA(Tk, Tx, To * Ty); TJ = FMA(Tq, Tx, Tu * Ty); T1Z = FNMS(T1h, Tx, T1f * Ty); TB = FNMS(To, Tx, Tk * Ty); T1X = FMA(T1f, Tx, T1h * Ty); T1A = FNMS(T5, Tx, T2 * Ty); TZ = FNMS(Ti, Tx, Tg * Ty); TL = FNMS(Tu, Tx, Tq * Ty); T1y = FMA(T2, Tx, T5 * Ty); TX = FMA(Tg, Tx, Ti * Ty); } } } { E TF, T2b, T4D, T4M, T2K, T3r, T4a, T4m, T1N, T28, T29, T3C, T3F, T43, T3X; E T3Y, T4o, T2f, T2g, T2h, T2y, T2D, T2E, T3g, T3h, T4z, T3n, T3o, T3p, T33; E T38, T4K, TW, T1r, T1s, T3J, T3M, T44, T3U, T3V, T4n, T2c, T2d, T2e, T2n; E T2s, T2t, T3d, T3e, T4y, T3k, T3l, T3m, T2S, T2X, T4J; { E T1, T47, Te, T46, Tw, T2H, TD, T2I, T9, Td; T1 = cr[0]; T47 = ci[0]; T9 = cr[WS(rs, 10)]; Td = ci[WS(rs, 10)]; Te = FMA(T8, T9, Tc * Td); T46 = FNMS(Tc, T9, T8 * Td); { E Tr, Tv, TA, TC; Tr = cr[WS(rs, 5)]; Tv = ci[WS(rs, 5)]; Tw = FMA(Tq, Tr, Tu * Tv); T2H = FNMS(Tu, Tr, Tq * Tv); TA = cr[WS(rs, 15)]; TC = ci[WS(rs, 15)]; TD = FMA(Tz, TA, TB * TC); T2I = FNMS(TB, TA, Tz * TC); } { E Tf, TE, T4B, T4C; Tf = T1 + Te; TE = Tw + TD; TF = Tf - TE; T2b = Tf + TE; T4B = T47 - T46; T4C = Tw - TD; T4D = T4B - T4C; T4M = T4C + T4B; } { E T2G, T2J, T48, T49; T2G = T1 - Te; T2J = T2H - T2I; T2K = T2G - T2J; T3r = T2G + T2J; T48 = T46 + T47; T49 = T2H + T2I; T4a = T48 - T49; T4m = T49 + T48; } } { E T1D, T3A, T2u, T31, T27, T3D, T2C, T37, T1M, T3B, T2x, T32, T1W, T3E, T2z; E T36; { E T1x, T2Z, T1C, T30; { E T1u, T1w, T1z, T1B; T1u = cr[WS(rs, 8)]; T1w = ci[WS(rs, 8)]; T1x = FMA(T1t, T1u, T1v * T1w); T2Z = FNMS(T1v, T1u, T1t * T1w); T1z = cr[WS(rs, 18)]; T1B = ci[WS(rs, 18)]; T1C = FMA(T1y, T1z, T1A * T1B); T30 = FNMS(T1A, T1z, T1y * T1B); } T1D = T1x + T1C; T3A = T2Z + T30; T2u = T1x - T1C; T31 = T2Z - T30; } { E T21, T2A, T26, T2B; { E T1Y, T20, T23, T25; T1Y = cr[WS(rs, 17)]; T20 = ci[WS(rs, 17)]; T21 = FMA(T1X, T1Y, T1Z * T20); T2A = FNMS(T1Z, T1Y, T1X * T20); T23 = cr[WS(rs, 7)]; T25 = ci[WS(rs, 7)]; T26 = FMA(T22, T23, T24 * T25); T2B = FNMS(T24, T23, T22 * T25); } T27 = T21 + T26; T3D = T2A + T2B; T2C = T2A - T2B; T37 = T21 - T26; } { E T1I, T2v, T1L, T2w; { E T1F, T1H, T1J, T1K; T1F = cr[WS(rs, 13)]; T1H = ci[WS(rs, 13)]; T1I = FMA(T1E, T1F, T1G * T1H); T2v = FNMS(T1G, T1F, T1E * T1H); T1J = cr[WS(rs, 3)]; T1K = ci[WS(rs, 3)]; T1L = FMA(Tg, T1J, Ti * T1K); T2w = FNMS(Ti, T1J, Tg * T1K); } T1M = T1I + T1L; T3B = T2v + T2w; T2x = T2v - T2w; T32 = T1I - T1L; } { E T1S, T34, T1V, T35; { E T1P, T1R, T1T, T1U; T1P = cr[WS(rs, 12)]; T1R = ci[WS(rs, 12)]; T1S = FMA(T1O, T1P, T1Q * T1R); T34 = FNMS(T1Q, T1P, T1O * T1R); T1T = cr[WS(rs, 2)]; T1U = ci[WS(rs, 2)]; T1V = FMA(T1f, T1T, T1h * T1U); T35 = FNMS(T1h, T1T, T1f * T1U); } T1W = T1S + T1V; T3E = T34 + T35; T2z = T1S - T1V; T36 = T34 - T35; } T1N = T1D - T1M; T28 = T1W - T27; T29 = T1N + T28; T3C = T3A - T3B; T3F = T3D - T3E; T43 = T3F - T3C; T3X = T3A + T3B; T3Y = T3E + T3D; T4o = T3X + T3Y; T2f = T1D + T1M; T2g = T1W + T27; T2h = T2f + T2g; T2y = T2u - T2x; T2D = T2z - T2C; T2E = T2y + T2D; T3g = T31 - T32; T3h = T36 - T37; T4z = T3g + T3h; T3n = T2u + T2x; T3o = T2z + T2C; T3p = T3n + T3o; T33 = T31 + T32; T38 = T36 + T37; T4K = T33 + T38; } { E TO, T3H, T2j, T2Q, T1q, T3L, T2r, T2T, TV, T3I, T2m, T2R, T1b, T3K, T2o; E T2W; { E TI, T2O, TN, T2P; { E TG, TH, TK, TM; TG = cr[WS(rs, 4)]; TH = ci[WS(rs, 4)]; TI = FMA(Tk, TG, To * TH); T2O = FNMS(To, TG, Tk * TH); TK = cr[WS(rs, 14)]; TM = ci[WS(rs, 14)]; TN = FMA(TJ, TK, TL * TM); T2P = FNMS(TL, TK, TJ * TM); } TO = TI + TN; T3H = T2O + T2P; T2j = TI - TN; T2Q = T2O - T2P; } { E T1e, T2p, T1p, T2q; { E T1c, T1d, T1k, T1o; T1c = cr[WS(rs, 1)]; T1d = ci[WS(rs, 1)]; T1e = FMA(T2, T1c, T5 * T1d); T2p = FNMS(T5, T1c, T2 * T1d); T1k = cr[WS(rs, 11)]; T1o = ci[WS(rs, 11)]; T1p = FMA(T1j, T1k, T1n * T1o); T2q = FNMS(T1n, T1k, T1j * T1o); } T1q = T1e + T1p; T3L = T2p + T2q; T2r = T2p - T2q; T2T = T1p - T1e; } { E TR, T2k, TU, T2l; { E TP, TQ, TS, TT; TP = cr[WS(rs, 9)]; TQ = ci[WS(rs, 9)]; TR = FMA(T3, TP, T6 * TQ); T2k = FNMS(T6, TP, T3 * TQ); TS = cr[WS(rs, 19)]; TT = ci[WS(rs, 19)]; TU = FMA(Tx, TS, Ty * TT); T2l = FNMS(Ty, TS, Tx * TT); } TV = TR + TU; T3I = T2k + T2l; T2m = T2k - T2l; T2R = TR - TU; } { E T11, T2U, T1a, T2V; { E TY, T10, T15, T19; TY = cr[WS(rs, 16)]; T10 = ci[WS(rs, 16)]; T11 = FMA(TX, TY, TZ * T10); T2U = FNMS(TZ, TY, TX * T10); T15 = cr[WS(rs, 6)]; T19 = ci[WS(rs, 6)]; T1a = FMA(T14, T15, T18 * T19); T2V = FNMS(T18, T15, T14 * T19); } T1b = T11 + T1a; T3K = T2U + T2V; T2o = T11 - T1a; T2W = T2U - T2V; } TW = TO - TV; T1r = T1b - T1q; T1s = TW + T1r; T3J = T3H - T3I; T3M = T3K - T3L; T44 = T3J + T3M; T3U = T3H + T3I; T3V = T3K + T3L; T4n = T3U + T3V; T2c = TO + TV; T2d = T1b + T1q; T2e = T2c + T2d; T2n = T2j - T2m; T2s = T2o - T2r; T2t = T2n + T2s; T3d = T2Q - T2R; T3e = T2W + T2T; T4y = T3d + T3e; T3k = T2j + T2m; T3l = T2o + T2r; T3m = T3k + T3l; T2S = T2Q + T2R; T2X = T2T - T2W; T4J = T2X - T2S; } { E T3y, T2a, T3x, T3O, T3Q, T3G, T3N, T3P, T3z; T3y = KP559016994 * (T1s - T29); T2a = T1s + T29; T3x = FNMS(KP250000000, T2a, TF); T3G = T3C + T3F; T3N = T3J - T3M; T3O = FNMS(KP587785252, T3N, KP951056516 * T3G); T3Q = FMA(KP951056516, T3N, KP587785252 * T3G); ci[WS(rs, 9)] = TF + T2a; T3P = T3y + T3x; ci[WS(rs, 5)] = T3P - T3Q; cr[WS(rs, 6)] = T3P + T3Q; T3z = T3x - T3y; cr[WS(rs, 2)] = T3z - T3O; ci[WS(rs, 1)] = T3z + T3O; } { E T3q, T3s, T3t, T3j, T3w, T3f, T3i, T3v, T3u; T3q = KP559016994 * (T3m - T3p); T3s = T3m + T3p; T3t = FNMS(KP250000000, T3s, T3r); T3f = T3d - T3e; T3i = T3g - T3h; T3j = FMA(KP951056516, T3f, KP587785252 * T3i); T3w = FNMS(KP587785252, T3f, KP951056516 * T3i); cr[WS(rs, 5)] = T3r + T3s; T3v = T3t - T3q; ci[WS(rs, 2)] = T3v - T3w; ci[WS(rs, 6)] = T3w + T3v; T3u = T3q + T3t; cr[WS(rs, 1)] = T3j + T3u; cr[WS(rs, 9)] = T3u - T3j; } { E T3R, T2i, T3S, T40, T42, T3W, T3Z, T41, T3T; T3R = KP559016994 * (T2e - T2h); T2i = T2e + T2h; T3S = FNMS(KP250000000, T2i, T2b); T3W = T3U - T3V; T3Z = T3X - T3Y; T40 = FMA(KP951056516, T3W, KP587785252 * T3Z); T42 = FNMS(KP587785252, T3W, KP951056516 * T3Z); cr[0] = T2b + T2i; T41 = T3S - T3R; ci[WS(rs, 7)] = T41 - T42; cr[WS(rs, 8)] = T41 + T42; T3T = T3R + T3S; cr[WS(rs, 4)] = T3T - T40; ci[WS(rs, 3)] = T3T + T40; } { E T2F, T2L, T2M, T3a, T3b, T2Y, T39, T3c, T2N; T2F = KP559016994 * (T2t - T2E); T2L = T2t + T2E; T2M = FNMS(KP250000000, T2L, T2K); T2Y = T2S + T2X; T39 = T33 - T38; T3a = FMA(KP951056516, T2Y, KP587785252 * T39); T3b = FNMS(KP587785252, T2Y, KP951056516 * T39); ci[WS(rs, 4)] = T2K + T2L; T3c = T2M - T2F; cr[WS(rs, 3)] = T3b + T3c; cr[WS(rs, 7)] = T3c - T3b; T2N = T2F + T2M; ci[0] = T2N - T3a; ci[WS(rs, 8)] = T3a + T2N; } { E T4e, T45, T4f, T4d, T4h, T4b, T4c, T4i, T4g; T4e = KP559016994 * (T44 + T43); T45 = T43 - T44; T4f = FMA(KP250000000, T45, T4a); T4b = T1r - TW; T4c = T1N - T28; T4d = FNMS(KP587785252, T4c, KP951056516 * T4b); T4h = FMA(KP587785252, T4b, KP951056516 * T4c); cr[WS(rs, 10)] = T45 - T4a; T4i = T4f - T4e; cr[WS(rs, 18)] = T4h - T4i; ci[WS(rs, 17)] = T4h + T4i; T4g = T4e + T4f; cr[WS(rs, 14)] = T4d - T4g; ci[WS(rs, 13)] = T4d + T4g; } { E T4A, T4E, T4F, T4x, T4H, T4v, T4w, T4I, T4G; T4A = KP559016994 * (T4y - T4z); T4E = T4y + T4z; T4F = FNMS(KP250000000, T4E, T4D); T4v = T3n - T3o; T4w = T3k - T3l; T4x = FNMS(KP587785252, T4w, KP951056516 * T4v); T4H = FMA(KP951056516, T4w, KP587785252 * T4v); ci[WS(rs, 14)] = T4E + T4D; T4I = T4A + T4F; ci[WS(rs, 10)] = T4H + T4I; ci[WS(rs, 18)] = T4I - T4H; T4G = T4A - T4F; cr[WS(rs, 13)] = T4x + T4G; cr[WS(rs, 17)] = T4G - T4x; } { E T4r, T4p, T4q, T4l, T4t, T4j, T4k, T4u, T4s; T4r = KP559016994 * (T4n - T4o); T4p = T4n + T4o; T4q = FNMS(KP250000000, T4p, T4m); T4j = T2c - T2d; T4k = T2f - T2g; T4l = FNMS(KP951056516, T4k, KP587785252 * T4j); T4t = FMA(KP951056516, T4j, KP587785252 * T4k); ci[WS(rs, 19)] = T4p + T4m; T4u = T4r + T4q; cr[WS(rs, 16)] = T4t - T4u; ci[WS(rs, 15)] = T4t + T4u; T4s = T4q - T4r; cr[WS(rs, 12)] = T4l - T4s; ci[WS(rs, 11)] = T4l + T4s; } { E T4Q, T4L, T4R, T4P, T4T, T4N, T4O, T4U, T4S; T4Q = KP559016994 * (T4J + T4K); T4L = T4J - T4K; T4R = FMA(KP250000000, T4L, T4M); T4N = T2n - T2s; T4O = T2y - T2D; T4P = FMA(KP951056516, T4N, KP587785252 * T4O); T4T = FNMS(KP587785252, T4N, KP951056516 * T4O); cr[WS(rs, 15)] = T4L - T4M; T4U = T4Q + T4R; ci[WS(rs, 12)] = T4T + T4U; ci[WS(rs, 16)] = T4U - T4T; T4S = T4Q - T4R; cr[WS(rs, 11)] = T4P + T4S; cr[WS(rs, 19)] = T4S - T4P; } } }}static const tw_instr twinstr[] = { {TW_CEXP, 1, 1}, {TW_CEXP, 1, 3}, {TW_CEXP, 1, 9}, {TW_CEXP, 1, 19}, {TW_NEXT, 1, 0}};static const hc2hc_desc desc = { 20, "hf2_20", twinstr, &GENUS, {204, 92, 72, 0} };void X(codelet_hf2_20) (planner *p) { X(khc2hc_register) (p, hf2_20, &desc);}#endif /* HAVE_FMA */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -