⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hc2cfdft_8.c

📁 快速fft变换
💻 C
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 21:03:19 EST 2008 */#include "codelet-rdft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_hc2cdft -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include hc2cf.h *//* * This function contains 82 FP additions, 52 FP multiplications, * (or, 60 additions, 30 multiplications, 22 fused multiply/add), * 55 stack variables, 2 constants, and 32 memory accesses */#include "hc2cf.h"static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     INT m;     for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(rs)) {	  E T1A, T1w, T1z, T1x, T1H, T1v, T1L, T1F;	  {	       E Ty, T14, TO, T1o, Tv, TG, T16, T1m, Ta, T19, T1h, TV, T10, TX, TZ;	       E Tk, T1i, TY, T1b, TF, TB, T1l;	       {		    E TH, TN, TK, TM;		    {			 E Tw, Tx, TI, TJ;			 Tw = Ip[0];			 Tx = Im[0];			 TI = Rm[0];			 TJ = Rp[0];			 TH = W[0];			 Ty = Tw - Tx;			 TN = Tw + Tx;			 T14 = TJ + TI;			 TK = TI - TJ;			 TM = W[1];		    }		    {			 E Ts, Tp, Tt, Tm, Tr;			 {			      E Tn, To, TL, T1n;			      Tn = Ip[WS(rs, 2)];			      To = Im[WS(rs, 2)];			      TL = TH * TK;			      T1n = TM * TK;			      Ts = Rp[WS(rs, 2)];			      TF = Tn + To;			      Tp = Tn - To;			      TO = FNMS(TM, TN, TL);			      T1o = FMA(TH, TN, T1n);			      Tt = Rm[WS(rs, 2)];			 }			 Tm = W[6];			 Tr = W[7];			 {			      E TE, TD, T15, TC, Tu, Tq;			      TB = W[8];			      TC = Tt - Ts;			      Tu = Ts + Tt;			      Tq = Tm * Tp;			      TE = W[9];			      TD = TB * TC;			      T15 = Tm * Tu;			      Tv = FNMS(Tr, Tu, Tq);			      T1l = TE * TC;			      TG = FNMS(TE, TF, TD);			      T16 = FMA(Tr, Tp, T15);			 }		    }	       }	       {		    E TU, TR, TT, T1g, TS;		    {			 E T2, T3, T7, T8;			 T2 = Ip[WS(rs, 1)];			 T1m = FMA(TB, TF, T1l);			 T3 = Im[WS(rs, 1)];			 T7 = Rp[WS(rs, 1)];			 T8 = Rm[WS(rs, 1)];			 {			      E T1, T4, T9, T6, T5, TQ, T18;			      T1 = W[2];			      TU = T2 + T3;			      T4 = T2 - T3;			      TR = T7 - T8;			      T9 = T7 + T8;			      T6 = W[3];			      T5 = T1 * T4;			      TQ = W[4];			      T18 = T1 * T9;			      TT = W[5];			      Ta = FNMS(T6, T9, T5);			      T1g = TQ * TU;			      TS = TQ * TR;			      T19 = FMA(T6, T4, T18);			 }		    }		    {			 E Tc, Td, Th, Ti;			 Tc = Ip[WS(rs, 3)];			 T1h = FNMS(TT, TR, T1g);			 TV = FMA(TT, TU, TS);			 Td = Im[WS(rs, 3)];			 Th = Rp[WS(rs, 3)];			 Ti = Rm[WS(rs, 3)];			 {			      E Tb, Te, Tj, Tg, Tf, TW, T1a;			      Tb = W[10];			      T10 = Tc + Td;			      Te = Tc - Td;			      TX = Th - Ti;			      Tj = Th + Ti;			      Tg = W[11];			      Tf = Tb * Te;			      TW = W[12];			      T1a = Tb * Tj;			      TZ = W[13];			      Tk = FNMS(Tg, Tj, Tf);			      T1i = TW * T10;			      TY = TW * TX;			      T1b = FMA(Tg, Te, T1a);			 }		    }	       }	       {		    E T1E, T1t, TA, T1s, T1D, T1u, T1e, T13, T1r, T1d;		    {			 E TP, T1f, T1q, T12, T17, T1c;			 {			      E Tl, T11, Tz, T1p, T1k, T1j;			      T1E = Ta - Tk;			      Tl = Ta + Tk;			      T1j = FNMS(TZ, TX, T1i);			      T11 = FMA(TZ, T10, TY);			      Tz = Tv + Ty;			      T1t = Ty - Tv;			      T1A = T1o - T1m;			      T1p = T1m + T1o;			      T1k = T1h + T1j;			      T1w = T1j - T1h;			      T1z = TO - TG;			      TP = TG + TO;			      T1f = Tz - Tl;			      TA = Tl + Tz;			      T1s = T1k + T1p;			      T1q = T1k - T1p;			      T12 = TV + T11;			      T1x = TV - T11;			      T1D = T14 - T16;			      T17 = T14 + T16;			      T1c = T19 + T1b;			      T1u = T19 - T1b;			 }			 Im[WS(rs, 1)] = KP500000000 * (T1q - T1f);			 T1e = T12 + TP;			 T13 = TP - T12;			 T1r = T17 + T1c;			 T1d = T17 - T1c;			 Ip[WS(rs, 2)] = KP500000000 * (T1f + T1q);		    }		    Im[WS(rs, 3)] = KP500000000 * (T13 - TA);		    Ip[0] = KP500000000 * (TA + T13);		    Rm[WS(rs, 3)] = KP500000000 * (T1r - T1s);		    Rp[0] = KP500000000 * (T1r + T1s);		    Rp[WS(rs, 2)] = KP500000000 * (T1d + T1e);		    Rm[WS(rs, 1)] = KP500000000 * (T1d - T1e);		    T1H = T1u + T1t;		    T1v = T1t - T1u;		    T1L = T1D + T1E;		    T1F = T1D - T1E;	       }	  }	  {	       E T1y, T1I, T1B, T1J;	       T1y = T1w + T1x;	       T1I = T1w - T1x;	       T1B = T1z - T1A;	       T1J = T1z + T1A;	       {		    E T1M, T1K, T1C, T1G;		    T1M = T1I + T1J;		    T1K = T1I - T1J;		    T1C = T1y + T1B;		    T1G = T1B - T1y;		    Im[0] = -(KP500000000 * (FNMS(KP707106781, T1K, T1H)));		    Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1K, T1H));		    Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1M, T1L));		    Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1M, T1L));		    Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1G, T1F));		    Rm[0] = KP500000000 * (FNMS(KP707106781, T1G, T1F));		    Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1C, T1v)));		    Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1C, T1v));	       }	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 8},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {60, 30, 22, 0} };void X(codelet_hc2cfdft_8) (planner *p) {     X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_hc2cdft -compact -variables 4 -pipeline-latency 4 -n 8 -dit -name hc2cfdft_8 -include hc2cf.h *//* * This function contains 82 FP additions, 44 FP multiplications, * (or, 68 additions, 30 multiplications, 14 fused multiply/add), * 39 stack variables, 2 constants, and 32 memory accesses */#include "hc2cf.h"static void hc2cfdft_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP353553390, +0.353553390593273762200422181052424519642417969);     DK(KP500000000, +0.500000000000000000000000000000000000000000000);     INT m;     for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 14, MAKE_VOLATILE_STRIDE(rs)) {	  E Tv, TX, Ts, TY, TE, T1a, TJ, T19, T1l, T1m, T9, T10, Ti, T11, TP;	  E T16, TU, T17, T1i, T1j;	  {	       E Tt, Tu, TD, Tz, TA, TB, Tn, TI, Tr, TG, Tk, To;	       Tt = Ip[0];	       Tu = Im[0];	       TD = Tt + Tu;	       Tz = Rm[0];	       TA = Rp[0];	       TB = Tz - TA;	       {		    E Tl, Tm, Tp, Tq;		    Tl = Ip[WS(rs, 2)];		    Tm = Im[WS(rs, 2)];		    Tn = Tl - Tm;		    TI = Tl + Tm;		    Tp = Rp[WS(rs, 2)];		    Tq = Rm[WS(rs, 2)];		    Tr = Tp + Tq;		    TG = Tp - Tq;	       }	       Tv = Tt - Tu;	       TX = TA + Tz;	       Tk = W[6];	       To = W[7];	       Ts = FNMS(To, Tr, Tk * Tn);	       TY = FMA(Tk, Tr, To * Tn);	       {		    E Ty, TC, TF, TH;		    Ty = W[0];		    TC = W[1];		    TE = FNMS(TC, TD, Ty * TB);		    T1a = FMA(TC, TB, Ty * TD);		    TF = W[8];		    TH = W[9];		    TJ = FMA(TF, TG, TH * TI);		    T19 = FNMS(TH, TG, TF * TI);	       }	       T1l = TJ + TE;	       T1m = T1a - T19;	  }	  {	       E T4, TO, T8, TM, Td, TT, Th, TR;	       {		    E T2, T3, T6, T7;		    T2 = Ip[WS(rs, 1)];		    T3 = Im[WS(rs, 1)];		    T4 = T2 - T3;		    TO = T2 + T3;		    T6 = Rp[WS(rs, 1)];		    T7 = Rm[WS(rs, 1)];		    T8 = T6 + T7;		    TM = T6 - T7;	       }	       {		    E Tb, Tc, Tf, Tg;		    Tb = Ip[WS(rs, 3)];		    Tc = Im[WS(rs, 3)];		    Td = Tb - Tc;		    TT = Tb + Tc;		    Tf = Rp[WS(rs, 3)];		    Tg = Rm[WS(rs, 3)];		    Th = Tf + Tg;		    TR = Tf - Tg;	       }	       {		    E T1, T5, Ta, Te;		    T1 = W[2];		    T5 = W[3];		    T9 = FNMS(T5, T8, T1 * T4);		    T10 = FMA(T1, T8, T5 * T4);		    Ta = W[10];		    Te = W[11];		    Ti = FNMS(Te, Th, Ta * Td);		    T11 = FMA(Ta, Th, Te * Td);		    {			 E TL, TN, TQ, TS;			 TL = W[4];			 TN = W[5];			 TP = FMA(TL, TM, TN * TO);			 T16 = FNMS(TN, TM, TL * TO);			 TQ = W[12];			 TS = W[13];			 TU = FMA(TQ, TR, TS * TT);			 T17 = FNMS(TS, TR, TQ * TT);		    }		    T1i = T17 - T16;		    T1j = TP - TU;	       }	  }	  {	       E T1h, T1t, T1w, T1y, T1o, T1s, T1r, T1x;	       {		    E T1f, T1g, T1u, T1v;		    T1f = Tv - Ts;		    T1g = T10 - T11;		    T1h = KP500000000 * (T1f - T1g);		    T1t = KP500000000 * (T1g + T1f);		    T1u = T1i - T1j;		    T1v = T1l + T1m;		    T1w = KP353553390 * (T1u - T1v);		    T1y = KP353553390 * (T1u + T1v);	       }	       {		    E T1k, T1n, T1p, T1q;		    T1k = T1i + T1j;		    T1n = T1l - T1m;		    T1o = KP353553390 * (T1k + T1n);		    T1s = KP353553390 * (T1n - T1k);		    T1p = TX - TY;		    T1q = T9 - Ti;		    T1r = KP500000000 * (T1p - T1q);		    T1x = KP500000000 * (T1p + T1q);	       }	       Ip[WS(rs, 1)] = T1h + T1o;	       Rp[WS(rs, 1)] = T1x + T1y;	       Im[WS(rs, 2)] = T1o - T1h;	       Rm[WS(rs, 2)] = T1x - T1y;	       Rm[0] = T1r - T1s;	       Im[0] = T1w - T1t;	       Rp[WS(rs, 3)] = T1r + T1s;	       Ip[WS(rs, 3)] = T1t + T1w;	  }	  {	       E Tx, T15, T1c, T1e, TW, T14, T13, T1d;	       {		    E Tj, Tw, T18, T1b;		    Tj = T9 + Ti;		    Tw = Ts + Tv;		    Tx = Tj + Tw;		    T15 = Tw - Tj;		    T18 = T16 + T17;		    T1b = T19 + T1a;		    T1c = T18 - T1b;		    T1e = T18 + T1b;	       }	       {		    E TK, TV, TZ, T12;		    TK = TE - TJ;		    TV = TP + TU;		    TW = TK - TV;		    T14 = TV + TK;		    TZ = TX + TY;		    T12 = T10 + T11;		    T13 = TZ - T12;		    T1d = TZ + T12;	       }	       Ip[0] = KP500000000 * (Tx + TW);	       Rp[0] = KP500000000 * (T1d + T1e);	       Im[WS(rs, 3)] = KP500000000 * (TW - Tx);	       Rm[WS(rs, 3)] = KP500000000 * (T1d - T1e);	       Rm[WS(rs, 1)] = KP500000000 * (T13 - T14);	       Im[WS(rs, 1)] = KP500000000 * (T1c - T15);	       Rp[WS(rs, 2)] = KP500000000 * (T13 + T14);	       Ip[WS(rs, 2)] = KP500000000 * (T15 + T1c);	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 1, 8},     {TW_NEXT, 1, 0}};static const hc2c_desc desc = { 8, "hc2cfdft_8", twinstr, &GENUS, {68, 30, 14, 0} };void X(codelet_hc2cfdft_8) (planner *p) {     X(khc2c_register) (p, hc2cfdft_8, &desc, HC2C_VIA_DFT);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -