📄 t2_25.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:39:58 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 25 -name t2_25 -include t.h *//* * This function contains 440 FP additions, 434 FP multiplications, * (or, 84 additions, 78 multiplications, 356 fused multiply/add), * 215 stack variables, 47 constants, and 100 memory accesses */#include "t.h"static void t2_25(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){ DK(KP860541664, +0.860541664367944677098261680920518816412804187); DK(KP681693190, +0.681693190061530575150324149145440022633095390); DK(KP560319534, +0.560319534973832390111614715371676131169633784); DK(KP949179823, +0.949179823508441261575555465843363271711583843); DK(KP557913902, +0.557913902031834264187699648465567037992437152); DK(KP249506682, +0.249506682107067890488084201715862638334226305); DK(KP906616052, +0.906616052148196230441134447086066874408359177); DK(KP968479752, +0.968479752739016373193524836781420152702090879); DK(KP621716863, +0.621716863012209892444754556304102309693593202); DK(KP614372930, +0.614372930789563808870829930444362096004872855); DK(KP845997307, +0.845997307939530944175097360758058292389769300); DK(KP998026728, +0.998026728428271561952336806863450553336905220); DK(KP994076283, +0.994076283785401014123185814696322018529298887); DK(KP734762448, +0.734762448793050413546343770063151342619912334); DK(KP772036680, +0.772036680810363904029489473607579825330539880); DK(KP062914667, +0.062914667253649757225485955897349402364686947); DK(KP803003575, +0.803003575438660414833440593570376004635464850); DK(KP943557151, +0.943557151597354104399655195398983005179443399); DK(KP554608978, +0.554608978404018097464974850792216217022558774); DK(KP248028675, +0.248028675328619457762448260696444630363259177); DK(KP921177326, +0.921177326965143320250447435415066029359282231); DK(KP833417178, +0.833417178328688677408962550243238843138996060); DK(KP726211448, +0.726211448929902658173535992263577167607493062); DK(KP525970792, +0.525970792408939708442463226536226366643874659); DK(KP541454447, +0.541454447536312777046285590082819509052033189); DK(KP242145790, +0.242145790282157779872542093866183953459003101); DK(KP992114701, +0.992114701314477831049793042785778521453036709); DK(KP559154169, +0.559154169276087864842202529084232643714075927); DK(KP683113946, +0.683113946453479238701949862233725244439656928); DK(KP851038619, +0.851038619207379630836264138867114231259902550); DK(KP912575812, +0.912575812670962425556968549836277086778922727); DK(KP912018591, +0.912018591466481957908415381764119056233607330); DK(KP470564281, +0.470564281212251493087595091036643380879947982); DK(KP968583161, +0.968583161128631119490168375464735813836012403); DK(KP827271945, +0.827271945972475634034355757144307982555673741); DK(KP126329378, +0.126329378446108174786050455341811215027378105); DK(KP904730450, +0.904730450839922351881287709692877908104763647); DK(KP831864738, +0.831864738706457140726048799369896829771167132); DK(KP871714437, +0.871714437527667770979999223229522602943903653); DK(KP549754652, +0.549754652192770074288023275540779861653779767); DK(KP634619297, +0.634619297544148100711287640319130485732531031); DK(KP939062505, +0.939062505817492352556001843133229685779824606); DK(KP256756360, +0.256756360367726783319498520922669048172391148); DK(KP951056516, +0.951056516295153572116439333379382143405698634); DK(KP559016994, +0.559016994374947424102293417182819058860154590); DK(KP250000000, +0.250000000000000000000000000000000000000000000); DK(KP618033988, +0.618033988749894848204586834365638117720309180); INT m; for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) { E T8c, T7k, T7i, T8i, T8g, T8b, T7j, T7b, T8d, T8h; { E T2, T8, T3, T6, Tk, Tv, TS, T4, Ta, TD, T2L, T10, Tm, T5, Tc; T2 = W[0]; T8 = W[4]; T3 = W[2]; T6 = W[3]; Tk = W[6]; Tv = T2 * T8; TS = T3 * T8; T4 = T2 * T3; Ta = T2 * T6; TD = T8 * Tk; T2L = T2 * Tk; T10 = T3 * Tk; Tm = W[7]; T5 = W[1]; Tc = W[5]; { E T7G, T86, T4s, T6a, T4g, TN, T4f, T7C, T7s, T7B, T5q, T6k, T3a, T5j, T6n; E T6m, T5g, T4a, T5n, T6j, T6C, T4G, T6z, T4z, T1v, T3t, T6y, T4w, T6B, T4D; E T6v, T4O, T6s, T4V, T21, T3H, T6r, T4S, T6u, T4L, T26, T3K, T5a, T2A, T3U; E T53, T2c, T3M, T2k, T3O; { E T11, T1b, Tb, T19, T7, T2m, TT, T15, T2Q, TX, T2p, T1g, T2a, T2e, T2i; E T27, T1c, T1O, T1K, T1q, T1m, T2x, T2t, T1W, T1S, T2G, T3Y, T2N, T5p, T38; E T48, T5i, T2K, T40, T2S, T41; { E T2M, T1j, T1l, T2X, T2U, T35, T31, T7r, T7p, T7o, T2O, T2R; { E T1, Tj, T4j, TK, T4q, TC, T4o, Tt, T4l; { E TE, Tw, TI, TA, Th, Tr, Tn, Td, Te, Ti, T14, T2P, TH, Tx, TB; T1 = ri[0]; T11 = FMA(T6, Tm, T10); T14 = T3 * Tm; T2P = T2 * Tm; TH = T8 * Tm; T2M = FMA(T5, Tm, T2L); T1b = FNMS(T5, T3, Ta); Tb = FMA(T5, T3, Ta); T19 = FMA(T5, T6, T4); T7 = FNMS(T5, T6, T4); T2m = FNMS(T6, Tc, TS); TT = FMA(T6, Tc, TS); TE = FMA(Tc, Tm, TD); T1j = FMA(T5, Tc, Tv); Tw = FNMS(T5, Tc, Tv); { E TW, Tz, T1f, T2d; TW = T3 * Tc; Tz = T2 * Tc; T15 = FNMS(T6, Tk, T14); T2Q = FNMS(T5, Tk, T2P); TI = FNMS(Tc, Tk, TH); T1f = T19 * Tc; T2d = T19 * Tk; { E T2h, T1a, Tg, Tq; T2h = T19 * Tm; T1a = T19 * T8; Tg = T7 * Tc; Tq = T7 * Tm; { E Tl, T9, T1p, T1k; Tl = T7 * Tk; T9 = T7 * T8; T1p = T1j * Tm; T1k = T1j * Tk; { E T34, T30, T1N, T1J; T34 = TT * Tm; T30 = TT * Tk; T1N = Tw * Tm; T1J = Tw * Tk; TX = FNMS(T6, T8, TW); T2p = FMA(T6, T8, TW); TA = FMA(T5, T8, Tz); T1l = FNMS(T5, T8, Tz); T1g = FMA(T1b, T8, T1f); T2a = FNMS(T1b, T8, T1f); T2e = FMA(T1b, Tm, T2d); T2i = FNMS(T1b, Tk, T2h); T27 = FMA(T1b, Tc, T1a); T1c = FNMS(T1b, Tc, T1a); T2X = FMA(Tb, T8, Tg); Th = FNMS(Tb, T8, Tg); Tr = FNMS(Tb, Tk, Tq); Tn = FMA(Tb, Tm, Tl); Td = FMA(Tb, Tc, T9); T2U = FNMS(Tb, Tc, T9); T35 = FNMS(TX, Tk, T34); T31 = FMA(TX, Tm, T30); T1O = FNMS(TA, Tk, T1N); T1K = FMA(TA, Tm, T1J); T1q = FNMS(T1l, Tk, T1p); T1m = FMA(T1l, Tm, T1k); { E T2w, T2s, T1V, T1R; T2w = T27 * Tm; T2s = T27 * Tk; T1V = Td * Tm; T1R = Td * Tk; T2x = FNMS(T2a, Tk, T2w); T2t = FMA(T2a, Tm, T2s); T1W = FNMS(Th, Tk, T1V); T1S = FMA(Th, Tm, T1R); T7r = ii[0]; Te = ri[WS(rs, 5)]; Ti = ii[WS(rs, 5)]; } } } } } { E TF, TJ, Tf, T4i, TG, T4p; TF = ri[WS(rs, 15)]; TJ = ii[WS(rs, 15)]; Tf = Td * Te; T4i = Td * Ti; TG = TE * TF; T4p = TE * TJ; Tj = FMA(Th, Ti, Tf); T4j = FNMS(Th, Te, T4i); TK = FMA(TI, TJ, TG); T4q = FNMS(TI, TF, T4p); } Tx = ri[WS(rs, 10)]; TB = ii[WS(rs, 10)]; { E To, Ts, Ty, T4n, Tp, T4k; To = ri[WS(rs, 20)]; Ts = ii[WS(rs, 20)]; Ty = Tw * Tx; T4n = Tw * TB; Tp = Tn * To; T4k = Tn * Ts; TC = FMA(TA, TB, Ty); T4o = FNMS(TA, Tx, T4n); Tt = FMA(Tr, Ts, Tp); T4l = FNMS(Tr, To, T4k); } } { E TL, T7F, T4r, Tu, T7E, T4m, TM; TL = TC + TK; T7F = TC - TK; T4r = T4o - T4q; T7p = T4o + T4q; Tu = Tj + Tt; T7E = Tj - Tt; T4m = T4j - T4l; T7o = T4j + T4l; T7G = FMA(KP618033988, T7F, T7E); T86 = FNMS(KP618033988, T7E, T7F); T4s = FMA(KP618033988, T4r, T4m); T6a = FNMS(KP618033988, T4m, T4r); T4g = Tu - TL; TM = Tu + TL; TN = T1 + TM; T4f = FNMS(KP250000000, TM, T1); } } { E T2D, T2F, T7q, T2E, T3X; T2D = ri[WS(rs, 3)]; T2F = ii[WS(rs, 3)]; T7C = T7o - T7p; T7q = T7o + T7p; T2E = T3 * T2D; T3X = T3 * T2F; { E T2V, T2W, T2Y, T32, T36; T2V = ri[WS(rs, 13)]; T7s = T7q + T7r; T7B = FNMS(KP250000000, T7q, T7r); T2G = FMA(T6, T2F, T2E); T3Y = FNMS(T6, T2D, T3X); T2W = T2U * T2V; T2Y = ii[WS(rs, 13)]; T32 = ri[WS(rs, 18)]; T36 = ii[WS(rs, 18)]; { E T2H, T2I, T2J, T3Z; { E T2Z, T45, T37, T47, T44, T33, T46; T2H = ri[WS(rs, 8)]; T2Z = FMA(T2X, T2Y, T2W); T44 = T2U * T2Y; T33 = T31 * T32; T46 = T31 * T36; T2I = T1j * T2H; T45 = FNMS(T2X, T2V, T44); T37 = FMA(T35, T36, T33); T47 = FNMS(T35, T32, T46); T2J = ii[WS(rs, 8)]; T2N = ri[WS(rs, 23)]; T5p = T2Z - T37; T38 = T2Z + T37; T48 = T45 + T47; T5i = T47 - T45; T3Z = T1j * T2J; T2O = T2M * T2N; T2R = ii[WS(rs, 23)]; } T2K = FMA(T1l, T2J, T2I); T40 = FNMS(T1l, T2H, T3Z); } } } T2S = FMA(T2Q, T2R, T2O); T41 = T2M * T2R; } { E TR, T3h, T1t, T4F, T3r, T4y, TZ, T3j, T17, T3l; { E T12, T16, T13, T3k; { E TO, TP, T5m, T5l, TQ; { E T2T, T5o, T42, T5f, T39; TO = ri[WS(rs, 1)]; T2T = T2K + T2S; T5o = T2K - T2S; T42 = FNMS(T2Q, T2N, T41); TP = T2 * TO; T5q = FMA(KP618033988, T5p, T5o); T6k = FNMS(KP618033988, T5o, T5p); T5f = T38 - T2T; T39 = T2T + T38; { E T43, T5h, T5e, T49; T43 = T40 + T42; T5h = T42 - T40; T5e = FNMS(KP250000000, T39, T2G); T3a = T2G + T39; T5j = FMA(KP618033988, T5i, T5h); T6n = FNMS(KP618033988, T5h, T5i); T5m = T48 - T43; T49 = T43 + T48; T6m = FMA(KP559016994, T5f, T5e); T5g = FNMS(KP559016994, T5f, T5e); T5l = FNMS(KP250000000, T49, T3Y); T4a = T3Y + T49; TQ = ii[WS(rs, 1)]; } } { E T1n, T1r, T1i, T1o, T3o, T3p; { E T1d, T1h, T1e, T3n, T3g; T1d = ri[WS(rs, 11)]; T1h = ii[WS(rs, 11)]; T5n = FNMS(KP559016994, T5m, T5l); T6j = FMA(KP559016994, T5m, T5l); TR = FMA(T5, TQ, TP); T3g = T2 * TQ; T1e = T1c * T1d; T3n = T1c * T1h; T1n = ri[WS(rs, 16)]; T3h = FNMS(T5, TO, T3g); T1r = ii[WS(rs, 16)]; T1i = FMA(T1g, T1h, T1e); T1o = T1m * T1n; T3o = FNMS(T1g, T1d, T3n); T3p = T1m * T1r; } { E TU, TY, TV, T3i, T3q, T1s; TU = ri[WS(rs, 6)]; T1s = FMA(T1q, T1r, T1o); TY = ii[WS(rs, 6)]; T3q = FNMS(T1q, T1n, T3p); TV = TT * TU; T1t = T1i + T1s; T4F = T1s - T1i; T3i = TT * TY; T3r = T3o + T3q; T4y = T3q - T3o; T12 = ri[WS(rs, 21)]; T16 = ii[WS(rs, 21)]; TZ = FMA(TX, TY, TV); T3j = FNMS(TX, TU, T3i); T13 = T11 * T12; T3k = T11 * T16; } } } T17 = FMA(T15, T16, T13); T3l = FNMS(T15, T12, T3k); } { E T1z, T3v, T4N, T1Z, T3F, T4U, T1D, T3x, T1H, T3z; { E T1E, T1G, T1F, T3y; { E T1w, T1y, T1x, T4v, T4C, T4u, T4B, T3u, T18, T4E; T1w = ri[WS(rs, 4)]; T1y = ii[WS(rs, 4)]; T18 = TZ + T17; T4E = T17 - TZ; { E T3m, T4x, T1u, T3s; T3m = T3j + T3l; T4x = T3j - T3l; T1x = T7 * T1w; T6C = FNMS(KP618033988, T4E, T4F); T4G = FMA(KP618033988, T4F, T4E); T1u = T18 + T1t; T4v = T18 - T1t; T6z = FMA(KP618033988, T4x, T4y); T4z = FNMS(KP618033988, T4y, T4x); T3s = T3m + T3r; T4C = T3m - T3r; T1v = TR + T1u; T4u = FNMS(KP250000000, T1u, TR);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -