⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t2_25.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 4 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:39:58 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 25 -name t2_25 -include t.h *//* * This function contains 440 FP additions, 434 FP multiplications, * (or, 84 additions, 78 multiplications, 356 fused multiply/add), * 215 stack variables, 47 constants, and 100 memory accesses */#include "t.h"static void t2_25(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP860541664, +0.860541664367944677098261680920518816412804187);     DK(KP681693190, +0.681693190061530575150324149145440022633095390);     DK(KP560319534, +0.560319534973832390111614715371676131169633784);     DK(KP949179823, +0.949179823508441261575555465843363271711583843);     DK(KP557913902, +0.557913902031834264187699648465567037992437152);     DK(KP249506682, +0.249506682107067890488084201715862638334226305);     DK(KP906616052, +0.906616052148196230441134447086066874408359177);     DK(KP968479752, +0.968479752739016373193524836781420152702090879);     DK(KP621716863, +0.621716863012209892444754556304102309693593202);     DK(KP614372930, +0.614372930789563808870829930444362096004872855);     DK(KP845997307, +0.845997307939530944175097360758058292389769300);     DK(KP998026728, +0.998026728428271561952336806863450553336905220);     DK(KP994076283, +0.994076283785401014123185814696322018529298887);     DK(KP734762448, +0.734762448793050413546343770063151342619912334);     DK(KP772036680, +0.772036680810363904029489473607579825330539880);     DK(KP062914667, +0.062914667253649757225485955897349402364686947);     DK(KP803003575, +0.803003575438660414833440593570376004635464850);     DK(KP943557151, +0.943557151597354104399655195398983005179443399);     DK(KP554608978, +0.554608978404018097464974850792216217022558774);     DK(KP248028675, +0.248028675328619457762448260696444630363259177);     DK(KP921177326, +0.921177326965143320250447435415066029359282231);     DK(KP833417178, +0.833417178328688677408962550243238843138996060);     DK(KP726211448, +0.726211448929902658173535992263577167607493062);     DK(KP525970792, +0.525970792408939708442463226536226366643874659);     DK(KP541454447, +0.541454447536312777046285590082819509052033189);     DK(KP242145790, +0.242145790282157779872542093866183953459003101);     DK(KP992114701, +0.992114701314477831049793042785778521453036709);     DK(KP559154169, +0.559154169276087864842202529084232643714075927);     DK(KP683113946, +0.683113946453479238701949862233725244439656928);     DK(KP851038619, +0.851038619207379630836264138867114231259902550);     DK(KP912575812, +0.912575812670962425556968549836277086778922727);     DK(KP912018591, +0.912018591466481957908415381764119056233607330);     DK(KP470564281, +0.470564281212251493087595091036643380879947982);     DK(KP968583161, +0.968583161128631119490168375464735813836012403);     DK(KP827271945, +0.827271945972475634034355757144307982555673741);     DK(KP126329378, +0.126329378446108174786050455341811215027378105);     DK(KP904730450, +0.904730450839922351881287709692877908104763647);     DK(KP831864738, +0.831864738706457140726048799369896829771167132);     DK(KP871714437, +0.871714437527667770979999223229522602943903653);     DK(KP549754652, +0.549754652192770074288023275540779861653779767);     DK(KP634619297, +0.634619297544148100711287640319130485732531031);     DK(KP939062505, +0.939062505817492352556001843133229685779824606);     DK(KP256756360, +0.256756360367726783319498520922669048172391148);     DK(KP951056516, +0.951056516295153572116439333379382143405698634);     DK(KP559016994, +0.559016994374947424102293417182819058860154590);     DK(KP250000000, +0.250000000000000000000000000000000000000000000);     DK(KP618033988, +0.618033988749894848204586834365638117720309180);     INT m;     for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) {	  E T8c, T7k, T7i, T8i, T8g, T8b, T7j, T7b, T8d, T8h;	  {	       E T2, T8, T3, T6, Tk, Tv, TS, T4, Ta, TD, T2L, T10, Tm, T5, Tc;	       T2 = W[0];	       T8 = W[4];	       T3 = W[2];	       T6 = W[3];	       Tk = W[6];	       Tv = T2 * T8;	       TS = T3 * T8;	       T4 = T2 * T3;	       Ta = T2 * T6;	       TD = T8 * Tk;	       T2L = T2 * Tk;	       T10 = T3 * Tk;	       Tm = W[7];	       T5 = W[1];	       Tc = W[5];	       {		    E T7G, T86, T4s, T6a, T4g, TN, T4f, T7C, T7s, T7B, T5q, T6k, T3a, T5j, T6n;		    E T6m, T5g, T4a, T5n, T6j, T6C, T4G, T6z, T4z, T1v, T3t, T6y, T4w, T6B, T4D;		    E T6v, T4O, T6s, T4V, T21, T3H, T6r, T4S, T6u, T4L, T26, T3K, T5a, T2A, T3U;		    E T53, T2c, T3M, T2k, T3O;		    {			 E T11, T1b, Tb, T19, T7, T2m, TT, T15, T2Q, TX, T2p, T1g, T2a, T2e, T2i;			 E T27, T1c, T1O, T1K, T1q, T1m, T2x, T2t, T1W, T1S, T2G, T3Y, T2N, T5p, T38;			 E T48, T5i, T2K, T40, T2S, T41;			 {			      E T2M, T1j, T1l, T2X, T2U, T35, T31, T7r, T7p, T7o, T2O, T2R;			      {				   E T1, Tj, T4j, TK, T4q, TC, T4o, Tt, T4l;				   {					E TE, Tw, TI, TA, Th, Tr, Tn, Td, Te, Ti, T14, T2P, TH, Tx, TB;					T1 = ri[0];					T11 = FMA(T6, Tm, T10);					T14 = T3 * Tm;					T2P = T2 * Tm;					TH = T8 * Tm;					T2M = FMA(T5, Tm, T2L);					T1b = FNMS(T5, T3, Ta);					Tb = FMA(T5, T3, Ta);					T19 = FMA(T5, T6, T4);					T7 = FNMS(T5, T6, T4);					T2m = FNMS(T6, Tc, TS);					TT = FMA(T6, Tc, TS);					TE = FMA(Tc, Tm, TD);					T1j = FMA(T5, Tc, Tv);					Tw = FNMS(T5, Tc, Tv);					{					     E TW, Tz, T1f, T2d;					     TW = T3 * Tc;					     Tz = T2 * Tc;					     T15 = FNMS(T6, Tk, T14);					     T2Q = FNMS(T5, Tk, T2P);					     TI = FNMS(Tc, Tk, TH);					     T1f = T19 * Tc;					     T2d = T19 * Tk;					     {						  E T2h, T1a, Tg, Tq;						  T2h = T19 * Tm;						  T1a = T19 * T8;						  Tg = T7 * Tc;						  Tq = T7 * Tm;						  {						       E Tl, T9, T1p, T1k;						       Tl = T7 * Tk;						       T9 = T7 * T8;						       T1p = T1j * Tm;						       T1k = T1j * Tk;						       {							    E T34, T30, T1N, T1J;							    T34 = TT * Tm;							    T30 = TT * Tk;							    T1N = Tw * Tm;							    T1J = Tw * Tk;							    TX = FNMS(T6, T8, TW);							    T2p = FMA(T6, T8, TW);							    TA = FMA(T5, T8, Tz);							    T1l = FNMS(T5, T8, Tz);							    T1g = FMA(T1b, T8, T1f);							    T2a = FNMS(T1b, T8, T1f);							    T2e = FMA(T1b, Tm, T2d);							    T2i = FNMS(T1b, Tk, T2h);							    T27 = FMA(T1b, Tc, T1a);							    T1c = FNMS(T1b, Tc, T1a);							    T2X = FMA(Tb, T8, Tg);							    Th = FNMS(Tb, T8, Tg);							    Tr = FNMS(Tb, Tk, Tq);							    Tn = FMA(Tb, Tm, Tl);							    Td = FMA(Tb, Tc, T9);							    T2U = FNMS(Tb, Tc, T9);							    T35 = FNMS(TX, Tk, T34);							    T31 = FMA(TX, Tm, T30);							    T1O = FNMS(TA, Tk, T1N);							    T1K = FMA(TA, Tm, T1J);							    T1q = FNMS(T1l, Tk, T1p);							    T1m = FMA(T1l, Tm, T1k);							    {								 E T2w, T2s, T1V, T1R;								 T2w = T27 * Tm;								 T2s = T27 * Tk;								 T1V = Td * Tm;								 T1R = Td * Tk;								 T2x = FNMS(T2a, Tk, T2w);								 T2t = FMA(T2a, Tm, T2s);								 T1W = FNMS(Th, Tk, T1V);								 T1S = FMA(Th, Tm, T1R);								 T7r = ii[0];								 Te = ri[WS(rs, 5)];								 Ti = ii[WS(rs, 5)];							    }						       }						  }					     }					}					{					     E TF, TJ, Tf, T4i, TG, T4p;					     TF = ri[WS(rs, 15)];					     TJ = ii[WS(rs, 15)];					     Tf = Td * Te;					     T4i = Td * Ti;					     TG = TE * TF;					     T4p = TE * TJ;					     Tj = FMA(Th, Ti, Tf);					     T4j = FNMS(Th, Te, T4i);					     TK = FMA(TI, TJ, TG);					     T4q = FNMS(TI, TF, T4p);					}					Tx = ri[WS(rs, 10)];					TB = ii[WS(rs, 10)];					{					     E To, Ts, Ty, T4n, Tp, T4k;					     To = ri[WS(rs, 20)];					     Ts = ii[WS(rs, 20)];					     Ty = Tw * Tx;					     T4n = Tw * TB;					     Tp = Tn * To;					     T4k = Tn * Ts;					     TC = FMA(TA, TB, Ty);					     T4o = FNMS(TA, Tx, T4n);					     Tt = FMA(Tr, Ts, Tp);					     T4l = FNMS(Tr, To, T4k);					}				   }				   {					E TL, T7F, T4r, Tu, T7E, T4m, TM;					TL = TC + TK;					T7F = TC - TK;					T4r = T4o - T4q;					T7p = T4o + T4q;					Tu = Tj + Tt;					T7E = Tj - Tt;					T4m = T4j - T4l;					T7o = T4j + T4l;					T7G = FMA(KP618033988, T7F, T7E);					T86 = FNMS(KP618033988, T7E, T7F);					T4s = FMA(KP618033988, T4r, T4m);					T6a = FNMS(KP618033988, T4m, T4r);					T4g = Tu - TL;					TM = Tu + TL;					TN = T1 + TM;					T4f = FNMS(KP250000000, TM, T1);				   }			      }			      {				   E T2D, T2F, T7q, T2E, T3X;				   T2D = ri[WS(rs, 3)];				   T2F = ii[WS(rs, 3)];				   T7C = T7o - T7p;				   T7q = T7o + T7p;				   T2E = T3 * T2D;				   T3X = T3 * T2F;				   {					E T2V, T2W, T2Y, T32, T36;					T2V = ri[WS(rs, 13)];					T7s = T7q + T7r;					T7B = FNMS(KP250000000, T7q, T7r);					T2G = FMA(T6, T2F, T2E);					T3Y = FNMS(T6, T2D, T3X);					T2W = T2U * T2V;					T2Y = ii[WS(rs, 13)];					T32 = ri[WS(rs, 18)];					T36 = ii[WS(rs, 18)];					{					     E T2H, T2I, T2J, T3Z;					     {						  E T2Z, T45, T37, T47, T44, T33, T46;						  T2H = ri[WS(rs, 8)];						  T2Z = FMA(T2X, T2Y, T2W);						  T44 = T2U * T2Y;						  T33 = T31 * T32;						  T46 = T31 * T36;						  T2I = T1j * T2H;						  T45 = FNMS(T2X, T2V, T44);						  T37 = FMA(T35, T36, T33);						  T47 = FNMS(T35, T32, T46);						  T2J = ii[WS(rs, 8)];						  T2N = ri[WS(rs, 23)];						  T5p = T2Z - T37;						  T38 = T2Z + T37;						  T48 = T45 + T47;						  T5i = T47 - T45;						  T3Z = T1j * T2J;						  T2O = T2M * T2N;						  T2R = ii[WS(rs, 23)];					     }					     T2K = FMA(T1l, T2J, T2I);					     T40 = FNMS(T1l, T2H, T3Z);					}				   }			      }			      T2S = FMA(T2Q, T2R, T2O);			      T41 = T2M * T2R;			 }			 {			      E TR, T3h, T1t, T4F, T3r, T4y, TZ, T3j, T17, T3l;			      {				   E T12, T16, T13, T3k;				   {					E TO, TP, T5m, T5l, TQ;					{					     E T2T, T5o, T42, T5f, T39;					     TO = ri[WS(rs, 1)];					     T2T = T2K + T2S;					     T5o = T2K - T2S;					     T42 = FNMS(T2Q, T2N, T41);					     TP = T2 * TO;					     T5q = FMA(KP618033988, T5p, T5o);					     T6k = FNMS(KP618033988, T5o, T5p);					     T5f = T38 - T2T;					     T39 = T2T + T38;					     {						  E T43, T5h, T5e, T49;						  T43 = T40 + T42;						  T5h = T42 - T40;						  T5e = FNMS(KP250000000, T39, T2G);						  T3a = T2G + T39;						  T5j = FMA(KP618033988, T5i, T5h);						  T6n = FNMS(KP618033988, T5h, T5i);						  T5m = T48 - T43;						  T49 = T43 + T48;						  T6m = FMA(KP559016994, T5f, T5e);						  T5g = FNMS(KP559016994, T5f, T5e);						  T5l = FNMS(KP250000000, T49, T3Y);						  T4a = T3Y + T49;						  TQ = ii[WS(rs, 1)];					     }					}					{					     E T1n, T1r, T1i, T1o, T3o, T3p;					     {						  E T1d, T1h, T1e, T3n, T3g;						  T1d = ri[WS(rs, 11)];						  T1h = ii[WS(rs, 11)];						  T5n = FNMS(KP559016994, T5m, T5l);						  T6j = FMA(KP559016994, T5m, T5l);						  TR = FMA(T5, TQ, TP);						  T3g = T2 * TQ;						  T1e = T1c * T1d;						  T3n = T1c * T1h;						  T1n = ri[WS(rs, 16)];						  T3h = FNMS(T5, TO, T3g);						  T1r = ii[WS(rs, 16)];						  T1i = FMA(T1g, T1h, T1e);						  T1o = T1m * T1n;						  T3o = FNMS(T1g, T1d, T3n);						  T3p = T1m * T1r;					     }					     {						  E TU, TY, TV, T3i, T3q, T1s;						  TU = ri[WS(rs, 6)];						  T1s = FMA(T1q, T1r, T1o);						  TY = ii[WS(rs, 6)];						  T3q = FNMS(T1q, T1n, T3p);						  TV = TT * TU;						  T1t = T1i + T1s;						  T4F = T1s - T1i;						  T3i = TT * TY;						  T3r = T3o + T3q;						  T4y = T3q - T3o;						  T12 = ri[WS(rs, 21)];						  T16 = ii[WS(rs, 21)];						  TZ = FMA(TX, TY, TV);						  T3j = FNMS(TX, TU, T3i);						  T13 = T11 * T12;						  T3k = T11 * T16;					     }					}				   }				   T17 = FMA(T15, T16, T13);				   T3l = FNMS(T15, T12, T3k);			      }			      {				   E T1z, T3v, T4N, T1Z, T3F, T4U, T1D, T3x, T1H, T3z;				   {					E T1E, T1G, T1F, T3y;					{					     E T1w, T1y, T1x, T4v, T4C, T4u, T4B, T3u, T18, T4E;					     T1w = ri[WS(rs, 4)];					     T1y = ii[WS(rs, 4)];					     T18 = TZ + T17;					     T4E = T17 - TZ;					     {						  E T3m, T4x, T1u, T3s;						  T3m = T3j + T3l;						  T4x = T3j - T3l;						  T1x = T7 * T1w;						  T6C = FNMS(KP618033988, T4E, T4F);						  T4G = FMA(KP618033988, T4F, T4E);						  T1u = T18 + T1t;						  T4v = T18 - T1t;						  T6z = FMA(KP618033988, T4x, T4y);						  T4z = FNMS(KP618033988, T4y, T4x);						  T3s = T3m + T3r;						  T4C = T3m - T3r;						  T1v = TR + T1u;						  T4u = FNMS(KP250000000, T1u, TR);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -