⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 n1_32.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 3 页
字号:
			 io[WS(os, 2)] = FMA(KP923879532, T5w, T5v);			 io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v);			 io[WS(os, 10)] = FMA(KP923879532, T5q, T5p);			 io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p);			 {			      E Tf, T1v, T5z, T5U, T1g, Tu, T5O, T5K, T5T, T5N, T5V, T5Y;			      {				   E T5E, T5J, T5P, T5S, T5L, T5M;				   {					E T5x, T5y, T5Q, T5R;					Tf = T7 + Te;					T5x = T7 - Te;					T5y = T1n - T1u;					T1v = T1n + T1u;					T5E = T5A + T5D;					T5Q = T5D - T5A;					T5R = T5F + T5I;					T5J = T5F - T5I;					T5P = T5x - T5y;					T5z = T5x + T5y;					T5U = T5Q + T5R;					T5S = T5Q - T5R;					T1g = T18 + T1f;					T5L = T18 - T1f;					T5M = Tt - Tm;					Tu = Tm + Tt;				   }				   ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P);				   T5O = T5J - T5E;				   T5K = T5E + T5J;				   T5T = T5M + T5L;				   T5N = T5L - T5M;				   ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P);			      }			      ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z);			      ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z);			      io[WS(os, 4)] = FMA(KP707106781, T5U, T5T);			      io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T);			      io[WS(os, 12)] = FMA(KP707106781, T5O, T5N);			      io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N);			      T5V = Tf - Tu;			      Tv = Tf + Tu;			      T60 = T5W + T5X;			      T5Y = T5W - T5X;			      ro[WS(os, 8)] = T5V + T5Y;			      T11 = TZ - TK;			      T10 = TK + TZ;			      T5Z = T1g + T1v;			      T1w = T1g - T1v;			      ro[WS(os, 24)] = T5V - T5Y;			 }		    }		    ro[0] = Tv + T10;		    ro[WS(os, 16)] = Tv - T10;		    io[0] = T5Z + T60;		    io[WS(os, 16)] = T5Z - T60;		    io[WS(os, 24)] = T1w - T11;		    io[WS(os, 8)] = T11 + T1w;		    {			 E T39, T3k, T3j, T3a, T3d, T3c, T47, T4i, T4h, T41, T3D, T48, T4b, T4a, T4e;			 E T3N, T45, T3Z, T42, T3K, T3Q, T4d;			 {			      E T2e, T37, T1X, T33, T31, T2n, T2F, T2O;			      {				   E T1H, T1W, T2X, T30;				   T39 = FMA(KP707106781, T1G, T1z);				   T1H = FNMS(KP707106781, T1G, T1z);				   T1W = T1O - T1V;				   T3k = T1O + T1V;				   T3j = FMA(KP707106781, T2W, T2T);				   T2X = FNMS(KP707106781, T2W, T2T);				   T30 = T2Y - T2Z;				   T3a = T2Z + T2Y;				   T3d = FMA(KP707106781, T2d, T22);				   T2e = FNMS(KP707106781, T2d, T22);				   T37 = FNMS(KP923879532, T1W, T1H);				   T1X = FMA(KP923879532, T1W, T1H);				   T33 = FMA(KP923879532, T30, T2X);				   T31 = FNMS(KP923879532, T30, T2X);				   T2n = FNMS(KP707106781, T2m, T2j);				   T3c = FMA(KP707106781, T2m, T2j);				   T3g = FMA(KP707106781, T2E, T2t);				   T2F = FNMS(KP707106781, T2E, T2t);				   T2O = FNMS(KP707106781, T2N, T2K);				   T3f = FMA(KP707106781, T2N, T2K);			      }			      {				   E T3V, T3Y, T3G, T3J;				   {					E T3v, T35, T2o, T34, T2P, T3C;					T47 = FNMS(KP707106781, T3u, T3t);					T3v = FMA(KP707106781, T3u, T3t);					T35 = FNMS(KP668178637, T2e, T2n);					T2o = FMA(KP668178637, T2n, T2e);					T34 = FMA(KP668178637, T2F, T2O);					T2P = FNMS(KP668178637, T2O, T2F);					T3C = T3y - T3B;					T4i = T3y + T3B;					T4h = FNMS(KP707106781, T3U, T3T);					T3V = FMA(KP707106781, T3U, T3T);					{					     E T38, T36, T32, T2Q;					     T38 = T35 + T34;					     T36 = T34 - T35;					     T32 = T2o + T2P;					     T2Q = T2o - T2P;					     T41 = FNMS(KP923879532, T3C, T3v);					     T3D = FMA(KP923879532, T3C, T3v);					     ro[WS(os, 29)] = FMA(KP831469612, T38, T37);					     ro[WS(os, 13)] = FNMS(KP831469612, T38, T37);					     io[WS(os, 5)] = FMA(KP831469612, T36, T33);					     io[WS(os, 21)] = FNMS(KP831469612, T36, T33);					     io[WS(os, 29)] = FMA(KP831469612, T32, T31);					     io[WS(os, 13)] = FNMS(KP831469612, T32, T31);					     ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X);					     ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X);					     T3Y = T3W - T3X;					     T48 = T3X + T3W;					}				   }				   T4b = FMA(KP707106781, T3F, T3E);				   T3G = FNMS(KP707106781, T3F, T3E);				   T3J = FNMS(KP707106781, T3I, T3H);				   T4a = FMA(KP707106781, T3I, T3H);				   T4e = FMA(KP707106781, T3M, T3L);				   T3N = FNMS(KP707106781, T3M, T3L);				   T45 = FMA(KP923879532, T3Y, T3V);				   T3Z = FNMS(KP923879532, T3Y, T3V);				   T42 = FNMS(KP668178637, T3G, T3J);				   T3K = FMA(KP668178637, T3J, T3G);				   T3Q = FNMS(KP707106781, T3P, T3O);				   T4d = FMA(KP707106781, T3P, T3O);			      }			 }			 {			      E T4p, T49, T4l, T4j, T4n, T4c, T43, T3R, T4m, T4f;			      T43 = FMA(KP668178637, T3N, T3Q);			      T3R = FNMS(KP668178637, T3Q, T3N);			      T4p = FMA(KP923879532, T48, T47);			      T49 = FNMS(KP923879532, T48, T47);			      {				   E T44, T46, T40, T3S;				   T44 = T42 - T43;				   T46 = T42 + T43;				   T40 = T3R - T3K;				   T3S = T3K + T3R;				   ro[WS(os, 11)] = FMA(KP831469612, T44, T41);				   ro[WS(os, 27)] = FNMS(KP831469612, T44, T41);				   io[WS(os, 3)] = FMA(KP831469612, T46, T45);				   io[WS(os, 19)] = FNMS(KP831469612, T46, T45);				   io[WS(os, 11)] = FMA(KP831469612, T40, T3Z);				   io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z);				   ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D);				   ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D);			      }			      T4l = FNMS(KP923879532, T4i, T4h);			      T4j = FMA(KP923879532, T4i, T4h);			      T4n = FNMS(KP198912367, T4a, T4b);			      T4c = FMA(KP198912367, T4b, T4a);			      T4m = FMA(KP198912367, T4d, T4e);			      T4f = FNMS(KP198912367, T4e, T4d);			      T3n = FNMS(KP923879532, T3a, T39);			      T3b = FMA(KP923879532, T3a, T39);			      {				   E T4q, T4o, T4k, T4g;				   T4q = T4n + T4m;				   T4o = T4m - T4n;				   T4k = T4c + T4f;				   T4g = T4c - T4f;				   ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p);				   ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p);				   io[WS(os, 7)] = FMA(KP980785280, T4o, T4l);				   io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l);				   io[WS(os, 31)] = FMA(KP980785280, T4k, T4j);				   io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j);				   ro[WS(os, 7)] = FMA(KP980785280, T4g, T49);				   ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49);			      }			      T3r = FMA(KP923879532, T3k, T3j);			      T3l = FNMS(KP923879532, T3k, T3j);			      T3o = FNMS(KP198912367, T3c, T3d);			      T3e = FMA(KP198912367, T3d, T3c);			 }		    }	       }	  }	  T3h = FNMS(KP198912367, T3g, T3f);	  T3p = FMA(KP198912367, T3f, T3g);	  {	       E T3s, T3q, T3i, T3m;	       T3s = T3o + T3p;	       T3q = T3o - T3p;	       T3i = T3e + T3h;	       T3m = T3h - T3e;	       ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n);	       ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n);	       io[WS(os, 1)] = FMA(KP980785280, T3s, T3r);	       io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r);	       io[WS(os, 9)] = FMA(KP980785280, T3m, T3l);	       io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l);	       ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b);	       ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b);	  }     }}static const kdft_desc desc = { 32, "n1_32", {236, 0, 136, 0}, &GENUS, 0, 0, 0, 0 };void X(codelet_n1_32) (planner *p) {     X(kdft_register) (p, n1_32, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_notw -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h *//* * This function contains 372 FP additions, 84 FP multiplications, * (or, 340 additions, 52 multiplications, 32 fused multiply/add), * 100 stack variables, 7 constants, and 128 memory accesses */#include "n.h"static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP555570233, +0.555570233019602224742830813948532874374937191);     DK(KP195090322, +0.195090322016128267848284868477022240927691618);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP382683432, +0.382683432365089771728459984030398866761344562);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT i;     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {	  E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G;	  E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W;	  E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E;	  E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D;	  E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I;	  {	       E T3, T1x, T14, T2S, T6, T2R, T17, T1y;	       {		    E T1, T2, T12, T13;		    T1 = ri[0];		    T2 = ri[WS(is, 16)];		    T3 = T1 + T2;		    T1x = T1 - T2;		    T12 = ii[0];		    T13 = ii[WS(is, 16)];		    T14 = T12 + T13;		    T2S = T12 - T13;	       }	       {		    E T4, T5, T15, T16;		    T4 = ri[WS(is, 8)];		    T5 = ri[WS(is, 24)];		    T6 = T4 + T5;		    T2R = T4 - T5;		    T15 = ii[WS(is, 8)];		    T16 = ii[WS(is, 24)];		    T17 = T15 + T16;		    T1y = T15 - T16;	       }	       T7 = T3 + T6;	       T4r = T3 - T6;	       T4Z = T14 - T17;	       T18 = T14 + T17;	       T1z = T1x - T1y;	       T3t = T1x + T1y;	       T3T = T2S - T2R;	       T2T = T2R + T2S;	  }	  {	       E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E;	       {		    E T8, T9, T19, T1a;		    T8 = ri[WS(is, 4)];		    T9 = ri[WS(is, 20)];		    Ta = T8 + T9;		    T1B = T8 - T9;		    T19 = ii[WS(is, 4)];		    T1a = ii[WS(is, 20)];		    T1b = T19 + T1a;		    T1A = T19 - T1a;	       }	       {		    E Tb, Tc, T1c, T1d;		    Tb = ri[WS(is, 28)];		    Tc = ri[WS(is, 12)];		    Td = Tb + Tc;		    T1D = Tb - Tc;		    T1c = ii[WS(is, 28)];		    T1d = ii[WS(is, 12)];		    T1e = T1c + T1d;		    T1E = T1c - T1d;	       }	       Te = Ta + Td;	       T1f = T1b + T1e;	       T50 = Td - Ta;	       T4s = T1b - T1e;	       {		    E T2U, T2V, T1C, T1F;		    T2U = T1D - T1E;		    T2V = T1B + T1A;		    T2W = KP707106781 * (T2U - T2V);		    T3u = KP707106781 * (T2V + T2U);		    T1C = T1A - T1B;		    T1F = T1D + T1E;		    T1G = KP707106781 * (T1C - T1F);		    T3U = KP707106781 * (T1C + T1F);	       }	  }	  {	       E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N;	       {		    E Tg, Th, T1h, T1i;		    Tg = ri[WS(is, 2)];		    Th = ri[WS(is, 18)];		    Ti = Tg + Th;		    T1L = Tg - Th;		    T1h = ii[WS(is, 2)];		    T1i = ii[WS(is, 18)];		    T1j = T1h + T1i;		    T1J = T1h - T1i;	       }	       {		    E Tj, Tk, T1k, T1l;		    Tj = ri[WS(is, 10)];		    Tk = ri[WS(is, 26)];		    Tl = Tj + Tk;		    T1I = Tj - Tk;		    T1k = ii[WS(is, 10)];		    T1l = ii[WS(is, 26)];		    T1m = T1k + T1l;		    T1M = T1k - T1l;	       }	       Tm = Ti + Tl;	       T1n = T1j + T1m;	       T1K = T1I + T1J;	       T1N = T1L - T1M;	       T1O = FNMS(KP923879532, T1N, KP382683432 * T1K);	       T2Z = FMA(KP923879532, T1K, KP382683432 * T1N);	       {		    E T3w, T3x, T4u, T4v;		    T3w = T1J - T1I;		    T3x = T1L + T1M;		    T3y = FNMS(KP382683432, T3x, KP923879532 * T3w);		    T3X = FMA(KP382683432, T3w, KP923879532 * T3x);		    T4u = T1j - T1m;		    T4v = Ti - Tl;		    T4w = T4u - T4v;		    T53 = T4v + T4u;	       }	  }	  {	       E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U;	       {		    E Tn, To, T1o, T1p;		    Tn = ri[WS(is, 30)];		    To = ri[WS(is, 14)];		    Tp = Tn + To;		    T1S = Tn - To;		    T1o = ii[WS(is, 30)];		    T1p = ii[WS(is, 14)];		    T1q = T1o + T1p;		    T1Q = T1o - T1p;	       }	       {		    E Tq, Tr, T1r, T1s;		    Tq = ri[WS(is, 6)];		    Tr = ri[WS(is, 22)];		    Ts = Tq + Tr;		    T1P = Tq - Tr;		    T1r = ii[WS(is, 6)];		    T1s = ii[WS(is, 22)];		    T1t = T1r + T1s;		    T1T = T1r - T1s;	       }	       Tt = Tp + Ts;	       T1u = T1q + T1t;	       T1R = T1P + T1Q;	       T1U = T1S - T1T;	       T1V = FMA(KP382683432, T1R, KP923879532 * T1U);	       T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U);	       {		    E T3z, T3A, T4x, T4y;		    T3z = T1Q - T1P;		    T3A = T1S + T1T;		    T3B = FMA(KP923879532, T3z, KP382683432 * T3A);		    T3W = FNMS(KP382683432, T3z, KP923879532 * T3A);		    T4x = Tp - Ts;		    T4y = T1q - T1t;		    T4z = T4x + T4y;		    T52 = T4x - T4y;	       }	  }	  {	       E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C;	       E T4P;	       {		    E TL, TM, T2H, T2I;		    TL = ri[WS(is, 31)];		    TM = ri[WS(is, 15)];		    TN = TL + TM;		    T2p = TL - TM;		    T2H = ii[WS(is, 31)];		    T2I = ii[WS(is, 15)];		    T2J = T2H - T2I;		    T4S = T2H + T2I;	       }	       {		    E TO, TP, T2q, T2r;		    TO = ri[WS(is, 7)];		    TP = ri[WS(is, 23)];		    TQ = TO + TP;		    T2G = TO - TP;		    T2q = ii[WS(is, 7)];		    T2r = ii[WS(is, 23)];		    T2s = T2q - T2r;		    T4T = T2q + T2r;	       }	       {		    E TS, TT, T2u, T2v;		    TS = ri[WS(is, 3)];		    TT = ri[WS(is, 19)];		    TU = TS + TT;		    T2x = TS - TT;		    T2u = ii[WS(is, 3)];		    T2v = ii[WS(is, 19)];		    T2w = T2u - T2v;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -