📄 n1_32.c
字号:
io[WS(os, 2)] = FMA(KP923879532, T5w, T5v); io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v); io[WS(os, 10)] = FMA(KP923879532, T5q, T5p); io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p); { E Tf, T1v, T5z, T5U, T1g, Tu, T5O, T5K, T5T, T5N, T5V, T5Y; { E T5E, T5J, T5P, T5S, T5L, T5M; { E T5x, T5y, T5Q, T5R; Tf = T7 + Te; T5x = T7 - Te; T5y = T1n - T1u; T1v = T1n + T1u; T5E = T5A + T5D; T5Q = T5D - T5A; T5R = T5F + T5I; T5J = T5F - T5I; T5P = T5x - T5y; T5z = T5x + T5y; T5U = T5Q + T5R; T5S = T5Q - T5R; T1g = T18 + T1f; T5L = T18 - T1f; T5M = Tt - Tm; Tu = Tm + Tt; } ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P); T5O = T5J - T5E; T5K = T5E + T5J; T5T = T5M + T5L; T5N = T5L - T5M; ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P); } ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z); ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z); io[WS(os, 4)] = FMA(KP707106781, T5U, T5T); io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T); io[WS(os, 12)] = FMA(KP707106781, T5O, T5N); io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N); T5V = Tf - Tu; Tv = Tf + Tu; T60 = T5W + T5X; T5Y = T5W - T5X; ro[WS(os, 8)] = T5V + T5Y; T11 = TZ - TK; T10 = TK + TZ; T5Z = T1g + T1v; T1w = T1g - T1v; ro[WS(os, 24)] = T5V - T5Y; } } ro[0] = Tv + T10; ro[WS(os, 16)] = Tv - T10; io[0] = T5Z + T60; io[WS(os, 16)] = T5Z - T60; io[WS(os, 24)] = T1w - T11; io[WS(os, 8)] = T11 + T1w; { E T39, T3k, T3j, T3a, T3d, T3c, T47, T4i, T4h, T41, T3D, T48, T4b, T4a, T4e; E T3N, T45, T3Z, T42, T3K, T3Q, T4d; { E T2e, T37, T1X, T33, T31, T2n, T2F, T2O; { E T1H, T1W, T2X, T30; T39 = FMA(KP707106781, T1G, T1z); T1H = FNMS(KP707106781, T1G, T1z); T1W = T1O - T1V; T3k = T1O + T1V; T3j = FMA(KP707106781, T2W, T2T); T2X = FNMS(KP707106781, T2W, T2T); T30 = T2Y - T2Z; T3a = T2Z + T2Y; T3d = FMA(KP707106781, T2d, T22); T2e = FNMS(KP707106781, T2d, T22); T37 = FNMS(KP923879532, T1W, T1H); T1X = FMA(KP923879532, T1W, T1H); T33 = FMA(KP923879532, T30, T2X); T31 = FNMS(KP923879532, T30, T2X); T2n = FNMS(KP707106781, T2m, T2j); T3c = FMA(KP707106781, T2m, T2j); T3g = FMA(KP707106781, T2E, T2t); T2F = FNMS(KP707106781, T2E, T2t); T2O = FNMS(KP707106781, T2N, T2K); T3f = FMA(KP707106781, T2N, T2K); } { E T3V, T3Y, T3G, T3J; { E T3v, T35, T2o, T34, T2P, T3C; T47 = FNMS(KP707106781, T3u, T3t); T3v = FMA(KP707106781, T3u, T3t); T35 = FNMS(KP668178637, T2e, T2n); T2o = FMA(KP668178637, T2n, T2e); T34 = FMA(KP668178637, T2F, T2O); T2P = FNMS(KP668178637, T2O, T2F); T3C = T3y - T3B; T4i = T3y + T3B; T4h = FNMS(KP707106781, T3U, T3T); T3V = FMA(KP707106781, T3U, T3T); { E T38, T36, T32, T2Q; T38 = T35 + T34; T36 = T34 - T35; T32 = T2o + T2P; T2Q = T2o - T2P; T41 = FNMS(KP923879532, T3C, T3v); T3D = FMA(KP923879532, T3C, T3v); ro[WS(os, 29)] = FMA(KP831469612, T38, T37); ro[WS(os, 13)] = FNMS(KP831469612, T38, T37); io[WS(os, 5)] = FMA(KP831469612, T36, T33); io[WS(os, 21)] = FNMS(KP831469612, T36, T33); io[WS(os, 29)] = FMA(KP831469612, T32, T31); io[WS(os, 13)] = FNMS(KP831469612, T32, T31); ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X); ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X); T3Y = T3W - T3X; T48 = T3X + T3W; } } T4b = FMA(KP707106781, T3F, T3E); T3G = FNMS(KP707106781, T3F, T3E); T3J = FNMS(KP707106781, T3I, T3H); T4a = FMA(KP707106781, T3I, T3H); T4e = FMA(KP707106781, T3M, T3L); T3N = FNMS(KP707106781, T3M, T3L); T45 = FMA(KP923879532, T3Y, T3V); T3Z = FNMS(KP923879532, T3Y, T3V); T42 = FNMS(KP668178637, T3G, T3J); T3K = FMA(KP668178637, T3J, T3G); T3Q = FNMS(KP707106781, T3P, T3O); T4d = FMA(KP707106781, T3P, T3O); } } { E T4p, T49, T4l, T4j, T4n, T4c, T43, T3R, T4m, T4f; T43 = FMA(KP668178637, T3N, T3Q); T3R = FNMS(KP668178637, T3Q, T3N); T4p = FMA(KP923879532, T48, T47); T49 = FNMS(KP923879532, T48, T47); { E T44, T46, T40, T3S; T44 = T42 - T43; T46 = T42 + T43; T40 = T3R - T3K; T3S = T3K + T3R; ro[WS(os, 11)] = FMA(KP831469612, T44, T41); ro[WS(os, 27)] = FNMS(KP831469612, T44, T41); io[WS(os, 3)] = FMA(KP831469612, T46, T45); io[WS(os, 19)] = FNMS(KP831469612, T46, T45); io[WS(os, 11)] = FMA(KP831469612, T40, T3Z); io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z); ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D); ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D); } T4l = FNMS(KP923879532, T4i, T4h); T4j = FMA(KP923879532, T4i, T4h); T4n = FNMS(KP198912367, T4a, T4b); T4c = FMA(KP198912367, T4b, T4a); T4m = FMA(KP198912367, T4d, T4e); T4f = FNMS(KP198912367, T4e, T4d); T3n = FNMS(KP923879532, T3a, T39); T3b = FMA(KP923879532, T3a, T39); { E T4q, T4o, T4k, T4g; T4q = T4n + T4m; T4o = T4m - T4n; T4k = T4c + T4f; T4g = T4c - T4f; ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p); ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p); io[WS(os, 7)] = FMA(KP980785280, T4o, T4l); io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l); io[WS(os, 31)] = FMA(KP980785280, T4k, T4j); io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j); ro[WS(os, 7)] = FMA(KP980785280, T4g, T49); ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49); } T3r = FMA(KP923879532, T3k, T3j); T3l = FNMS(KP923879532, T3k, T3j); T3o = FNMS(KP198912367, T3c, T3d); T3e = FMA(KP198912367, T3d, T3c); } } } } T3h = FNMS(KP198912367, T3g, T3f); T3p = FMA(KP198912367, T3f, T3g); { E T3s, T3q, T3i, T3m; T3s = T3o + T3p; T3q = T3o - T3p; T3i = T3e + T3h; T3m = T3h - T3e; ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n); ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n); io[WS(os, 1)] = FMA(KP980785280, T3s, T3r); io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r); io[WS(os, 9)] = FMA(KP980785280, T3m, T3l); io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l); ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b); ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b); } }}static const kdft_desc desc = { 32, "n1_32", {236, 0, 136, 0}, &GENUS, 0, 0, 0, 0 };void X(codelet_n1_32) (planner *p) { X(kdft_register) (p, n1_32, &desc);}#else /* HAVE_FMA *//* Generated by: ../../../genfft/gen_notw -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h *//* * This function contains 372 FP additions, 84 FP multiplications, * (or, 340 additions, 52 multiplications, 32 fused multiply/add), * 100 stack variables, 7 constants, and 128 memory accesses */#include "n.h"static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){ DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP555570233, +0.555570233019602224742830813948532874374937191); DK(KP195090322, +0.195090322016128267848284868477022240927691618); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP382683432, +0.382683432365089771728459984030398866761344562); DK(KP707106781, +0.707106781186547524400844362104849039284835938); INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G; E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W; E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E; E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D; E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I; { E T3, T1x, T14, T2S, T6, T2R, T17, T1y; { E T1, T2, T12, T13; T1 = ri[0]; T2 = ri[WS(is, 16)]; T3 = T1 + T2; T1x = T1 - T2; T12 = ii[0]; T13 = ii[WS(is, 16)]; T14 = T12 + T13; T2S = T12 - T13; } { E T4, T5, T15, T16; T4 = ri[WS(is, 8)]; T5 = ri[WS(is, 24)]; T6 = T4 + T5; T2R = T4 - T5; T15 = ii[WS(is, 8)]; T16 = ii[WS(is, 24)]; T17 = T15 + T16; T1y = T15 - T16; } T7 = T3 + T6; T4r = T3 - T6; T4Z = T14 - T17; T18 = T14 + T17; T1z = T1x - T1y; T3t = T1x + T1y; T3T = T2S - T2R; T2T = T2R + T2S; } { E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E; { E T8, T9, T19, T1a; T8 = ri[WS(is, 4)]; T9 = ri[WS(is, 20)]; Ta = T8 + T9; T1B = T8 - T9; T19 = ii[WS(is, 4)]; T1a = ii[WS(is, 20)]; T1b = T19 + T1a; T1A = T19 - T1a; } { E Tb, Tc, T1c, T1d; Tb = ri[WS(is, 28)]; Tc = ri[WS(is, 12)]; Td = Tb + Tc; T1D = Tb - Tc; T1c = ii[WS(is, 28)]; T1d = ii[WS(is, 12)]; T1e = T1c + T1d; T1E = T1c - T1d; } Te = Ta + Td; T1f = T1b + T1e; T50 = Td - Ta; T4s = T1b - T1e; { E T2U, T2V, T1C, T1F; T2U = T1D - T1E; T2V = T1B + T1A; T2W = KP707106781 * (T2U - T2V); T3u = KP707106781 * (T2V + T2U); T1C = T1A - T1B; T1F = T1D + T1E; T1G = KP707106781 * (T1C - T1F); T3U = KP707106781 * (T1C + T1F); } } { E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N; { E Tg, Th, T1h, T1i; Tg = ri[WS(is, 2)]; Th = ri[WS(is, 18)]; Ti = Tg + Th; T1L = Tg - Th; T1h = ii[WS(is, 2)]; T1i = ii[WS(is, 18)]; T1j = T1h + T1i; T1J = T1h - T1i; } { E Tj, Tk, T1k, T1l; Tj = ri[WS(is, 10)]; Tk = ri[WS(is, 26)]; Tl = Tj + Tk; T1I = Tj - Tk; T1k = ii[WS(is, 10)]; T1l = ii[WS(is, 26)]; T1m = T1k + T1l; T1M = T1k - T1l; } Tm = Ti + Tl; T1n = T1j + T1m; T1K = T1I + T1J; T1N = T1L - T1M; T1O = FNMS(KP923879532, T1N, KP382683432 * T1K); T2Z = FMA(KP923879532, T1K, KP382683432 * T1N); { E T3w, T3x, T4u, T4v; T3w = T1J - T1I; T3x = T1L + T1M; T3y = FNMS(KP382683432, T3x, KP923879532 * T3w); T3X = FMA(KP382683432, T3w, KP923879532 * T3x); T4u = T1j - T1m; T4v = Ti - Tl; T4w = T4u - T4v; T53 = T4v + T4u; } } { E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U; { E Tn, To, T1o, T1p; Tn = ri[WS(is, 30)]; To = ri[WS(is, 14)]; Tp = Tn + To; T1S = Tn - To; T1o = ii[WS(is, 30)]; T1p = ii[WS(is, 14)]; T1q = T1o + T1p; T1Q = T1o - T1p; } { E Tq, Tr, T1r, T1s; Tq = ri[WS(is, 6)]; Tr = ri[WS(is, 22)]; Ts = Tq + Tr; T1P = Tq - Tr; T1r = ii[WS(is, 6)]; T1s = ii[WS(is, 22)]; T1t = T1r + T1s; T1T = T1r - T1s; } Tt = Tp + Ts; T1u = T1q + T1t; T1R = T1P + T1Q; T1U = T1S - T1T; T1V = FMA(KP382683432, T1R, KP923879532 * T1U); T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U); { E T3z, T3A, T4x, T4y; T3z = T1Q - T1P; T3A = T1S + T1T; T3B = FMA(KP923879532, T3z, KP382683432 * T3A); T3W = FNMS(KP382683432, T3z, KP923879532 * T3A); T4x = Tp - Ts; T4y = T1q - T1t; T4z = T4x + T4y; T52 = T4x - T4y; } } { E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C; E T4P; { E TL, TM, T2H, T2I; TL = ri[WS(is, 31)]; TM = ri[WS(is, 15)]; TN = TL + TM; T2p = TL - TM; T2H = ii[WS(is, 31)]; T2I = ii[WS(is, 15)]; T2J = T2H - T2I; T4S = T2H + T2I; } { E TO, TP, T2q, T2r; TO = ri[WS(is, 7)]; TP = ri[WS(is, 23)]; TQ = TO + TP; T2G = TO - TP; T2q = ii[WS(is, 7)]; T2r = ii[WS(is, 23)]; T2s = T2q - T2r; T4T = T2q + T2r; } { E TS, TT, T2u, T2v; TS = ri[WS(is, 3)]; TT = ri[WS(is, 19)]; TU = TS + TT; T2x = TS - TT; T2u = ii[WS(is, 3)]; T2v = ii[WS(is, 19)]; T2w = T2u - T2v;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -