⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 n1_32.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:07 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_notw -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h *//* * This function contains 372 FP additions, 136 FP multiplications, * (or, 236 additions, 0 multiplications, 136 fused multiply/add), * 136 stack variables, 7 constants, and 128 memory accesses */#include "n.h"static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP198912367, +0.198912367379658006911597622644676228597850501);     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP668178637, +0.668178637919298919997757686523080761552472251);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     DK(KP414213562, +0.414213562373095048801688724209698078569671875);     INT i;     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {	  E T3g, T3f, T3n, T3b, T3r, T3l, T3o, T3e, T3h, T3p;	  {	       E T2T, T3T, T4r, T7, T3t, T1z, T18, T4Z, Te, T50, T4s, T1f, T2W, T3u, T3U;	       E T1G, Tm, T1n, T3X, T3y, T2Z, T1O, T53, T4w, Tt, T1u, T3W, T3B, T2Y, T1V;	       E T52, T4z, T3O, T2t, T3L, T2K, T5F, TZ, T5I, T5X, T4R, T5k, T3M, T2E, T5j;	       E T4W, T3P, T2N, T3H, T22, T3E, T2j, T4H, T4K, T5A, TK, T5D, T5W, T2k, T2l;	       E T4G, T5h, T3F, T2d;	       {		    E Tj, T1L, Ti, T1I, T1j, Tk, T1k, T1l;		    {			 E T4, T1x, T3, T2R, T14, T5, T15, T16, T1C, T1F;			 {			      E T1, T2, T12, T13;			      T1 = ri[0];			      T2 = ri[WS(is, 16)];			      T12 = ii[0];			      T13 = ii[WS(is, 16)];			      T4 = ri[WS(is, 8)];			      T1x = T1 - T2;			      T3 = T1 + T2;			      T2R = T12 - T13;			      T14 = T12 + T13;			      T5 = ri[WS(is, 24)];			      T15 = ii[WS(is, 8)];			      T16 = ii[WS(is, 24)];			 }			 {			      E Tb, T1A, Ta, T1B, T1b, Tc, T1c, T1d;			      {				   E T8, T9, T19, T1a;				   T8 = ri[WS(is, 4)];				   {					E T2S, T6, T1y, T17;					T2S = T4 - T5;					T6 = T4 + T5;					T1y = T15 - T16;					T17 = T15 + T16;					T2T = T2R - T2S;					T3T = T2S + T2R;					T4r = T3 - T6;					T7 = T3 + T6;					T3t = T1x - T1y;					T1z = T1x + T1y;					T18 = T14 + T17;					T4Z = T14 - T17;					T9 = ri[WS(is, 20)];				   }				   T19 = ii[WS(is, 4)];				   T1a = ii[WS(is, 20)];				   Tb = ri[WS(is, 28)];				   T1A = T8 - T9;				   Ta = T8 + T9;				   T1B = T19 - T1a;				   T1b = T19 + T1a;				   Tc = ri[WS(is, 12)];				   T1c = ii[WS(is, 28)];				   T1d = ii[WS(is, 12)];			      }			      {				   E T2U, T1D, Td, T1E, T1e, T2V;				   T1C = T1A + T1B;				   T2U = T1B - T1A;				   T1D = Tb - Tc;				   Td = Tb + Tc;				   T1E = T1c - T1d;				   T1e = T1c + T1d;				   Te = Ta + Td;				   T50 = Td - Ta;				   T1F = T1D - T1E;				   T2V = T1D + T1E;				   T4s = T1b - T1e;				   T1f = T1b + T1e;				   T2W = T2U + T2V;				   T3u = T2U - T2V;			      }			 }			 {			      E Tg, Th, T1h, T1i;			      Tg = ri[WS(is, 2)];			      T3U = T1F - T1C;			      T1G = T1C + T1F;			      Th = ri[WS(is, 18)];			      T1h = ii[WS(is, 2)];			      T1i = ii[WS(is, 18)];			      Tj = ri[WS(is, 10)];			      T1L = Tg - Th;			      Ti = Tg + Th;			      T1I = T1h - T1i;			      T1j = T1h + T1i;			      Tk = ri[WS(is, 26)];			      T1k = ii[WS(is, 10)];			      T1l = ii[WS(is, 26)];			 }		    }		    {			 E Tq, T1S, Tp, T1P, T1q, Tr, T1r, T1s;			 {			      E Tn, To, T1o, T1p, T1J, Tl;			      Tn = ri[WS(is, 30)];			      T1J = Tj - Tk;			      Tl = Tj + Tk;			      {				   E T1M, T1m, T3w, T1K;				   T1M = T1k - T1l;				   T1m = T1k + T1l;				   T3w = T1J + T1I;				   T1K = T1I - T1J;				   {					E T4v, T3x, T1N, T4u;					T4v = Ti - Tl;					Tm = Ti + Tl;					T3x = T1L - T1M;					T1N = T1L + T1M;					T4u = T1j - T1m;					T1n = T1j + T1m;					T3X = FNMS(KP414213562, T3w, T3x);					T3y = FMA(KP414213562, T3x, T3w);					T2Z = FMA(KP414213562, T1K, T1N);					T1O = FNMS(KP414213562, T1N, T1K);					T53 = T4v + T4u;					T4w = T4u - T4v;					To = ri[WS(is, 14)];				   }			      }			      T1o = ii[WS(is, 30)];			      T1p = ii[WS(is, 14)];			      Tq = ri[WS(is, 6)];			      T1S = Tn - To;			      Tp = Tn + To;			      T1P = T1o - T1p;			      T1q = T1o + T1p;			      Tr = ri[WS(is, 22)];			      T1r = ii[WS(is, 6)];			      T1s = ii[WS(is, 22)];			 }			 {			      E T4S, T4V, T2L, T2M;			      {				   E T2G, TN, T4N, T2r, T2s, TQ, T4O, T2J, TV, T2x, TU, T4T, T2w, TW, T2A;				   E T2B;				   {					E TO, TP, T2H, T2I;					{					     E TL, TM, T2p, T2q, T1Q, Ts;					     TL = ri[WS(is, 31)];					     T1Q = Tq - Tr;					     Ts = Tq + Tr;					     {						  E T1T, T1t, T3z, T1R;						  T1T = T1r - T1s;						  T1t = T1r + T1s;						  T3z = T1Q + T1P;						  T1R = T1P - T1Q;						  {						       E T4x, T3A, T1U, T4y;						       T4x = Tp - Ts;						       Tt = Tp + Ts;						       T3A = T1S - T1T;						       T1U = T1S + T1T;						       T4y = T1q - T1t;						       T1u = T1q + T1t;						       T3W = FMA(KP414213562, T3z, T3A);						       T3B = FNMS(KP414213562, T3A, T3z);						       T2Y = FNMS(KP414213562, T1R, T1U);						       T1V = FMA(KP414213562, T1U, T1R);						       T52 = T4x - T4y;						       T4z = T4x + T4y;						       TM = ri[WS(is, 15)];						  }					     }					     T2p = ii[WS(is, 31)];					     T2q = ii[WS(is, 15)];					     TO = ri[WS(is, 7)];					     T2G = TL - TM;					     TN = TL + TM;					     T4N = T2p + T2q;					     T2r = T2p - T2q;					     TP = ri[WS(is, 23)];					     T2H = ii[WS(is, 7)];					     T2I = ii[WS(is, 23)];					}					{					     E TS, TT, T2u, T2v;					     TS = ri[WS(is, 3)];					     T2s = TO - TP;					     TQ = TO + TP;					     T4O = T2H + T2I;					     T2J = T2H - T2I;					     TT = ri[WS(is, 19)];					     T2u = ii[WS(is, 3)];					     T2v = ii[WS(is, 19)];					     TV = ri[WS(is, 27)];					     T2x = TS - TT;					     TU = TS + TT;					     T4T = T2u + T2v;					     T2w = T2u - T2v;					     TW = ri[WS(is, 11)];					     T2A = ii[WS(is, 27)];					     T2B = ii[WS(is, 11)];					}				   }				   {					E T2z, T4U, T2C, TR, TY, T4Q, TX;					T3O = T2s + T2r;					T2t = T2r - T2s;					T2z = TV - TW;					TX = TV + TW;					T4U = T2A + T2B;					T2C = T2A - T2B;					T3L = T2G - T2J;					T2K = T2G + T2J;					T4S = TN - TQ;					TR = TN + TQ;					TY = TU + TX;					T4Q = TX - TU;					{					     E T4P, T5G, T5H, T2y, T2D;					     T4P = T4N - T4O;					     T5G = T4N + T4O;					     T5H = T4T + T4U;					     T4V = T4T - T4U;					     T5F = TR - TY;					     TZ = TR + TY;					     T5I = T5G - T5H;					     T5X = T5G + T5H;					     T2L = T2x + T2w;					     T2y = T2w - T2x;					     T2D = T2z + T2C;					     T2M = T2z - T2C;					     T4R = T4P - T4Q;					     T5k = T4Q + T4P;					     T3M = T2D - T2y;					     T2E = T2y + T2D;					}				   }			      }			      {				   E T2f, Ty, T4C, T20, T21, TB, T4D, T2i, TG, T26, TF, T4I, T25, TH, T29;				   E T2a;				   {					E Tz, TA, T2g, T2h;					{					     E Tw, Tx, T1Y, T1Z;					     Tw = ri[WS(is, 1)];					     T5j = T4S + T4V;					     T4W = T4S - T4V;					     T3P = T2L - T2M;					     T2N = T2L + T2M;					     Tx = ri[WS(is, 17)];					     T1Y = ii[WS(is, 1)];					     T1Z = ii[WS(is, 17)];					     Tz = ri[WS(is, 9)];					     T2f = Tw - Tx;					     Ty = Tw + Tx;					     T4C = T1Y + T1Z;					     T20 = T1Y - T1Z;					     TA = ri[WS(is, 25)];					     T2g = ii[WS(is, 9)];					     T2h = ii[WS(is, 25)];					}					{					     E TD, TE, T23, T24;					     TD = ri[WS(is, 5)];					     T21 = Tz - TA;					     TB = Tz + TA;					     T4D = T2g + T2h;					     T2i = T2g - T2h;					     TE = ri[WS(is, 21)];					     T23 = ii[WS(is, 5)];					     T24 = ii[WS(is, 21)];					     TG = ri[WS(is, 29)];					     T26 = TD - TE;					     TF = TD + TE;					     T4I = T23 + T24;					     T25 = T23 - T24;					     TH = ri[WS(is, 13)];					     T29 = ii[WS(is, 29)];					     T2a = ii[WS(is, 13)];					}				   }				   {					E T28, T4J, T2b, TC, TJ, T4F, TI;					T3H = T21 + T20;					T22 = T20 - T21;					T28 = TG - TH;					TI = TG + TH;					T4J = T29 + T2a;					T2b = T29 - T2a;					T3E = T2f - T2i;					T2j = T2f + T2i;					T4H = Ty - TB;					TC = Ty + TB;					TJ = TF + TI;					T4F = TI - TF;					{					     E T4E, T5B, T5C, T27, T2c;					     T4E = T4C - T4D;					     T5B = T4C + T4D;					     T5C = T4I + T4J;					     T4K = T4I - T4J;					     T5A = TC - TJ;					     TK = TC + TJ;					     T5D = T5B - T5C;					     T5W = T5B + T5C;					     T2k = T26 + T25;					     T27 = T25 - T26;					     T2c = T28 + T2b;					     T2l = T28 - T2b;					     T4G = T4E - T4F;					     T5h = T4F + T4E;					     T3F = T2c - T27;					     T2d = T27 + T2c;					}				   }			      }			 }		    }	       }	       {		    E T3I, T2m, Tv, T60, T11, T10, T5Z, T1w;		    {			 E T5f, T5w, T5q, T5m, T5v, T5p;			 {			      E T5d, T5g, T5o, T4B, T5a, T5n, T5e, T56, T4Y, T57, T55;			      {				   E T4X, T4M, T5b, T5c, T51, T54;				   {					E T4t, T4A, T58, T59, T4L;					T5d = T4r + T4s;					T4t = T4r - T4s;					T5g = T4H + T4K;					T4L = T4H - T4K;					T3I = T2k - T2l;					T2m = T2k + T2l;					T4A = T4w - T4z;					T5o = T4w + T4z;					T4X = FNMS(KP414213562, T4W, T4R);					T58 = FMA(KP414213562, T4R, T4W);					T59 = FNMS(KP414213562, T4G, T4L);					T4M = FMA(KP414213562, T4L, T4G);					T5b = FNMS(KP707106781, T4A, T4t);					T4B = FMA(KP707106781, T4A, T4t);					T5c = T59 + T58;					T5a = T58 - T59;					T5n = T50 + T4Z;					T51 = T4Z - T50;					T54 = T52 - T53;					T5e = T53 + T52;				   }				   ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b);				   T56 = T4M + T4X;				   T4Y = T4M - T4X;				   T57 = FMA(KP707106781, T54, T51);				   T55 = FNMS(KP707106781, T54, T51);				   ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b);			      }			      ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B);			      ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B);			      io[WS(os, 6)] = FMA(KP923879532, T5a, T57);			      io[WS(os, 22)] = FNMS(KP923879532, T5a, T57);			      io[WS(os, 30)] = FMA(KP923879532, T56, T55);			      io[WS(os, 14)] = FNMS(KP923879532, T56, T55);			      {				   E T5i, T5l, T5r, T5u, T5s, T5t;				   T5i = FMA(KP414213562, T5h, T5g);				   T5s = FNMS(KP414213562, T5g, T5h);				   T5t = FMA(KP414213562, T5j, T5k);				   T5l = FNMS(KP414213562, T5k, T5j);				   T5r = FNMS(KP707106781, T5e, T5d);				   T5f = FMA(KP707106781, T5e, T5d);				   T5w = T5s + T5t;				   T5u = T5s - T5t;				   ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r);				   T5q = T5l - T5i;				   T5m = T5i + T5l;				   T5v = FMA(KP707106781, T5o, T5n);				   T5p = FNMS(KP707106781, T5o, T5n);				   ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r);			      }			 }			 ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f);			 ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -