📄 n1_32.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:07 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_notw -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include n.h *//* * This function contains 372 FP additions, 136 FP multiplications, * (or, 236 additions, 0 multiplications, 136 fused multiply/add), * 136 stack variables, 7 constants, and 128 memory accesses */#include "n.h"static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){ DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP414213562, +0.414213562373095048801688724209698078569671875); INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { E T3g, T3f, T3n, T3b, T3r, T3l, T3o, T3e, T3h, T3p; { E T2T, T3T, T4r, T7, T3t, T1z, T18, T4Z, Te, T50, T4s, T1f, T2W, T3u, T3U; E T1G, Tm, T1n, T3X, T3y, T2Z, T1O, T53, T4w, Tt, T1u, T3W, T3B, T2Y, T1V; E T52, T4z, T3O, T2t, T3L, T2K, T5F, TZ, T5I, T5X, T4R, T5k, T3M, T2E, T5j; E T4W, T3P, T2N, T3H, T22, T3E, T2j, T4H, T4K, T5A, TK, T5D, T5W, T2k, T2l; E T4G, T5h, T3F, T2d; { E Tj, T1L, Ti, T1I, T1j, Tk, T1k, T1l; { E T4, T1x, T3, T2R, T14, T5, T15, T16, T1C, T1F; { E T1, T2, T12, T13; T1 = ri[0]; T2 = ri[WS(is, 16)]; T12 = ii[0]; T13 = ii[WS(is, 16)]; T4 = ri[WS(is, 8)]; T1x = T1 - T2; T3 = T1 + T2; T2R = T12 - T13; T14 = T12 + T13; T5 = ri[WS(is, 24)]; T15 = ii[WS(is, 8)]; T16 = ii[WS(is, 24)]; } { E Tb, T1A, Ta, T1B, T1b, Tc, T1c, T1d; { E T8, T9, T19, T1a; T8 = ri[WS(is, 4)]; { E T2S, T6, T1y, T17; T2S = T4 - T5; T6 = T4 + T5; T1y = T15 - T16; T17 = T15 + T16; T2T = T2R - T2S; T3T = T2S + T2R; T4r = T3 - T6; T7 = T3 + T6; T3t = T1x - T1y; T1z = T1x + T1y; T18 = T14 + T17; T4Z = T14 - T17; T9 = ri[WS(is, 20)]; } T19 = ii[WS(is, 4)]; T1a = ii[WS(is, 20)]; Tb = ri[WS(is, 28)]; T1A = T8 - T9; Ta = T8 + T9; T1B = T19 - T1a; T1b = T19 + T1a; Tc = ri[WS(is, 12)]; T1c = ii[WS(is, 28)]; T1d = ii[WS(is, 12)]; } { E T2U, T1D, Td, T1E, T1e, T2V; T1C = T1A + T1B; T2U = T1B - T1A; T1D = Tb - Tc; Td = Tb + Tc; T1E = T1c - T1d; T1e = T1c + T1d; Te = Ta + Td; T50 = Td - Ta; T1F = T1D - T1E; T2V = T1D + T1E; T4s = T1b - T1e; T1f = T1b + T1e; T2W = T2U + T2V; T3u = T2U - T2V; } } { E Tg, Th, T1h, T1i; Tg = ri[WS(is, 2)]; T3U = T1F - T1C; T1G = T1C + T1F; Th = ri[WS(is, 18)]; T1h = ii[WS(is, 2)]; T1i = ii[WS(is, 18)]; Tj = ri[WS(is, 10)]; T1L = Tg - Th; Ti = Tg + Th; T1I = T1h - T1i; T1j = T1h + T1i; Tk = ri[WS(is, 26)]; T1k = ii[WS(is, 10)]; T1l = ii[WS(is, 26)]; } } { E Tq, T1S, Tp, T1P, T1q, Tr, T1r, T1s; { E Tn, To, T1o, T1p, T1J, Tl; Tn = ri[WS(is, 30)]; T1J = Tj - Tk; Tl = Tj + Tk; { E T1M, T1m, T3w, T1K; T1M = T1k - T1l; T1m = T1k + T1l; T3w = T1J + T1I; T1K = T1I - T1J; { E T4v, T3x, T1N, T4u; T4v = Ti - Tl; Tm = Ti + Tl; T3x = T1L - T1M; T1N = T1L + T1M; T4u = T1j - T1m; T1n = T1j + T1m; T3X = FNMS(KP414213562, T3w, T3x); T3y = FMA(KP414213562, T3x, T3w); T2Z = FMA(KP414213562, T1K, T1N); T1O = FNMS(KP414213562, T1N, T1K); T53 = T4v + T4u; T4w = T4u - T4v; To = ri[WS(is, 14)]; } } T1o = ii[WS(is, 30)]; T1p = ii[WS(is, 14)]; Tq = ri[WS(is, 6)]; T1S = Tn - To; Tp = Tn + To; T1P = T1o - T1p; T1q = T1o + T1p; Tr = ri[WS(is, 22)]; T1r = ii[WS(is, 6)]; T1s = ii[WS(is, 22)]; } { E T4S, T4V, T2L, T2M; { E T2G, TN, T4N, T2r, T2s, TQ, T4O, T2J, TV, T2x, TU, T4T, T2w, TW, T2A; E T2B; { E TO, TP, T2H, T2I; { E TL, TM, T2p, T2q, T1Q, Ts; TL = ri[WS(is, 31)]; T1Q = Tq - Tr; Ts = Tq + Tr; { E T1T, T1t, T3z, T1R; T1T = T1r - T1s; T1t = T1r + T1s; T3z = T1Q + T1P; T1R = T1P - T1Q; { E T4x, T3A, T1U, T4y; T4x = Tp - Ts; Tt = Tp + Ts; T3A = T1S - T1T; T1U = T1S + T1T; T4y = T1q - T1t; T1u = T1q + T1t; T3W = FMA(KP414213562, T3z, T3A); T3B = FNMS(KP414213562, T3A, T3z); T2Y = FNMS(KP414213562, T1R, T1U); T1V = FMA(KP414213562, T1U, T1R); T52 = T4x - T4y; T4z = T4x + T4y; TM = ri[WS(is, 15)]; } } T2p = ii[WS(is, 31)]; T2q = ii[WS(is, 15)]; TO = ri[WS(is, 7)]; T2G = TL - TM; TN = TL + TM; T4N = T2p + T2q; T2r = T2p - T2q; TP = ri[WS(is, 23)]; T2H = ii[WS(is, 7)]; T2I = ii[WS(is, 23)]; } { E TS, TT, T2u, T2v; TS = ri[WS(is, 3)]; T2s = TO - TP; TQ = TO + TP; T4O = T2H + T2I; T2J = T2H - T2I; TT = ri[WS(is, 19)]; T2u = ii[WS(is, 3)]; T2v = ii[WS(is, 19)]; TV = ri[WS(is, 27)]; T2x = TS - TT; TU = TS + TT; T4T = T2u + T2v; T2w = T2u - T2v; TW = ri[WS(is, 11)]; T2A = ii[WS(is, 27)]; T2B = ii[WS(is, 11)]; } } { E T2z, T4U, T2C, TR, TY, T4Q, TX; T3O = T2s + T2r; T2t = T2r - T2s; T2z = TV - TW; TX = TV + TW; T4U = T2A + T2B; T2C = T2A - T2B; T3L = T2G - T2J; T2K = T2G + T2J; T4S = TN - TQ; TR = TN + TQ; TY = TU + TX; T4Q = TX - TU; { E T4P, T5G, T5H, T2y, T2D; T4P = T4N - T4O; T5G = T4N + T4O; T5H = T4T + T4U; T4V = T4T - T4U; T5F = TR - TY; TZ = TR + TY; T5I = T5G - T5H; T5X = T5G + T5H; T2L = T2x + T2w; T2y = T2w - T2x; T2D = T2z + T2C; T2M = T2z - T2C; T4R = T4P - T4Q; T5k = T4Q + T4P; T3M = T2D - T2y; T2E = T2y + T2D; } } } { E T2f, Ty, T4C, T20, T21, TB, T4D, T2i, TG, T26, TF, T4I, T25, TH, T29; E T2a; { E Tz, TA, T2g, T2h; { E Tw, Tx, T1Y, T1Z; Tw = ri[WS(is, 1)]; T5j = T4S + T4V; T4W = T4S - T4V; T3P = T2L - T2M; T2N = T2L + T2M; Tx = ri[WS(is, 17)]; T1Y = ii[WS(is, 1)]; T1Z = ii[WS(is, 17)]; Tz = ri[WS(is, 9)]; T2f = Tw - Tx; Ty = Tw + Tx; T4C = T1Y + T1Z; T20 = T1Y - T1Z; TA = ri[WS(is, 25)]; T2g = ii[WS(is, 9)]; T2h = ii[WS(is, 25)]; } { E TD, TE, T23, T24; TD = ri[WS(is, 5)]; T21 = Tz - TA; TB = Tz + TA; T4D = T2g + T2h; T2i = T2g - T2h; TE = ri[WS(is, 21)]; T23 = ii[WS(is, 5)]; T24 = ii[WS(is, 21)]; TG = ri[WS(is, 29)]; T26 = TD - TE; TF = TD + TE; T4I = T23 + T24; T25 = T23 - T24; TH = ri[WS(is, 13)]; T29 = ii[WS(is, 29)]; T2a = ii[WS(is, 13)]; } } { E T28, T4J, T2b, TC, TJ, T4F, TI; T3H = T21 + T20; T22 = T20 - T21; T28 = TG - TH; TI = TG + TH; T4J = T29 + T2a; T2b = T29 - T2a; T3E = T2f - T2i; T2j = T2f + T2i; T4H = Ty - TB; TC = Ty + TB; TJ = TF + TI; T4F = TI - TF; { E T4E, T5B, T5C, T27, T2c; T4E = T4C - T4D; T5B = T4C + T4D; T5C = T4I + T4J; T4K = T4I - T4J; T5A = TC - TJ; TK = TC + TJ; T5D = T5B - T5C; T5W = T5B + T5C; T2k = T26 + T25; T27 = T25 - T26; T2c = T28 + T2b; T2l = T28 - T2b; T4G = T4E - T4F; T5h = T4F + T4E; T3F = T2c - T27; T2d = T27 + T2c; } } } } } } { E T3I, T2m, Tv, T60, T11, T10, T5Z, T1w; { E T5f, T5w, T5q, T5m, T5v, T5p; { E T5d, T5g, T5o, T4B, T5a, T5n, T5e, T56, T4Y, T57, T55; { E T4X, T4M, T5b, T5c, T51, T54; { E T4t, T4A, T58, T59, T4L; T5d = T4r + T4s; T4t = T4r - T4s; T5g = T4H + T4K; T4L = T4H - T4K; T3I = T2k - T2l; T2m = T2k + T2l; T4A = T4w - T4z; T5o = T4w + T4z; T4X = FNMS(KP414213562, T4W, T4R); T58 = FMA(KP414213562, T4R, T4W); T59 = FNMS(KP414213562, T4G, T4L); T4M = FMA(KP414213562, T4L, T4G); T5b = FNMS(KP707106781, T4A, T4t); T4B = FMA(KP707106781, T4A, T4t); T5c = T59 + T58; T5a = T58 - T59; T5n = T50 + T4Z; T51 = T4Z - T50; T54 = T52 - T53; T5e = T53 + T52; } ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b); T56 = T4M + T4X; T4Y = T4M - T4X; T57 = FMA(KP707106781, T54, T51); T55 = FNMS(KP707106781, T54, T51); ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b); } ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B); ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B); io[WS(os, 6)] = FMA(KP923879532, T5a, T57); io[WS(os, 22)] = FNMS(KP923879532, T5a, T57); io[WS(os, 30)] = FMA(KP923879532, T56, T55); io[WS(os, 14)] = FNMS(KP923879532, T56, T55); { E T5i, T5l, T5r, T5u, T5s, T5t; T5i = FMA(KP414213562, T5h, T5g); T5s = FNMS(KP414213562, T5g, T5h); T5t = FMA(KP414213562, T5j, T5k); T5l = FNMS(KP414213562, T5k, T5j); T5r = FNMS(KP707106781, T5e, T5d); T5f = FMA(KP707106781, T5e, T5d); T5w = T5s + T5t; T5u = T5s - T5t; ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r); T5q = T5l - T5i; T5m = T5i + T5l; T5v = FMA(KP707106781, T5o, T5n); T5p = FNMS(KP707106781, T5o, T5n); ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r); } } ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f); ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -