⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t2_16.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:38:40 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include t.h *//* * This function contains 196 FP additions, 134 FP multiplications, * (or, 104 additions, 42 multiplications, 92 fused multiply/add), * 100 stack variables, 3 constants, and 64 memory accesses */#include "t.h"static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP414213562, +0.414213562373095048801688724209698078569671875);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT m;     for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(rs)) {	  E T3S, T3R;	  {	       E T2, Tf, TM, TO, T3, Tg, TN, TS, T4, Tp, T6, T5, Th;	       T2 = W[0];	       Tf = W[2];	       TM = W[6];	       TO = W[7];	       T3 = W[4];	       Tg = T2 * Tf;	       TN = T2 * TM;	       TS = T2 * TO;	       T4 = T2 * T3;	       Tp = Tf * T3;	       T6 = W[5];	       T5 = W[1];	       Th = W[3];	       {		    E TZ, Te, T1U, T3A, T3L, T2D, T1G, T2A, T3h, T1R, T2B, T2I, T3i, Tx, T3M;		    E T1Z, T3w, TL, T26, T25, T37, T1d, T2o, T2l, T3c, T1s, T2m, T2t, T3d, TX;		    E T10, TV, T2a, TY, T2b;		    {			 E TF, TP, TT, Tq, TW, Tz, Tu, TI, TC, T1m, T1f, T1p, T1j, Tr, Ts;			 E Tv, To, T1W;			 {			      E Ti, Tm, T1L, T1O, T1D, T1A, T1x, T2y, T1F, T2x;			      {				   E T1, T7, Tb, T3z, T8, T1z, T9, Tc;				   {					E T1i, T1e, T1C, T1y, Tt, Ta, Tl;					T1 = ri[0];					Tt = Tf * T6;					Ta = T2 * T6;					T7 = FMA(T5, T6, T4);					TF = FNMS(T5, T6, T4);					TP = FMA(T5, TO, TN);					TT = FNMS(T5, TM, TS);					Tq = FNMS(Th, T6, Tp);					TW = FMA(Th, T6, Tp);					Tz = FMA(T5, Th, Tg);					Ti = FNMS(T5, Th, Tg);					Tl = T2 * Th;					Tu = FMA(Th, T3, Tt);					TZ = FNMS(Th, T3, Tt);					TI = FMA(T5, T3, Ta);					Tb = FNMS(T5, T3, Ta);					T1i = Ti * T6;					T1e = Ti * T3;					T1C = Tz * T6;					T1y = Tz * T3;					Tm = FMA(T5, Tf, Tl);					TC = FNMS(T5, Tf, Tl);					T3z = ii[0];					T8 = ri[WS(rs, 8)];					T1m = FNMS(Tm, T6, T1e);					T1f = FMA(Tm, T6, T1e);					T1p = FMA(Tm, T3, T1i);					T1j = FNMS(Tm, T3, T1i);					T1L = FNMS(TC, T6, T1y);					T1z = FMA(TC, T6, T1y);					T1O = FMA(TC, T3, T1C);					T1D = FNMS(TC, T3, T1C);					T9 = T7 * T8;					Tc = ii[WS(rs, 8)];				   }				   {					E T1u, T1w, T1v, T2w, T3y, T1B, T1E, Td, T3x;					T1u = ri[WS(rs, 15)];					T1w = ii[WS(rs, 15)];					T1A = ri[WS(rs, 7)];					Td = FMA(Tb, Tc, T9);					T3x = T7 * Tc;					T1v = TM * T1u;					T2w = TM * T1w;					Te = T1 + Td;					T1U = T1 - Td;					T3y = FNMS(Tb, T8, T3x);					T1B = T1z * T1A;					T1E = ii[WS(rs, 7)];					T1x = FMA(TO, T1w, T1v);					T3A = T3y + T3z;					T3L = T3z - T3y;					T2y = T1z * T1E;					T1F = FMA(T1D, T1E, T1B);					T2x = FNMS(TO, T1u, T2w);				   }			      }			      {				   E T1H, T1I, T1J, T1M, T1P, T2z;				   T1H = ri[WS(rs, 3)];				   T2z = FNMS(T1D, T1A, T2y);				   T2D = T1x - T1F;				   T1G = T1x + T1F;				   T1I = Tf * T1H;				   T2A = T2x - T2z;				   T3h = T2x + T2z;				   T1J = ii[WS(rs, 3)];				   T1M = ri[WS(rs, 11)];				   T1P = ii[WS(rs, 11)];				   {					E Tj, Tk, Tn, T1V;					{					     E T1K, T2F, T1Q, T2H, T2E, T1N, T2G;					     Tj = ri[WS(rs, 4)];					     T1K = FMA(Th, T1J, T1I);					     T2E = Tf * T1J;					     T1N = T1L * T1M;					     T2G = T1L * T1P;					     Tk = Ti * Tj;					     T2F = FNMS(Th, T1H, T2E);					     T1Q = FMA(T1O, T1P, T1N);					     T2H = FNMS(T1O, T1M, T2G);					     Tn = ii[WS(rs, 4)];					     Tr = ri[WS(rs, 12)];					     T1R = T1K + T1Q;					     T2B = T1K - T1Q;					     T2I = T2F - T2H;					     T3i = T2F + T2H;					     T1V = Ti * Tn;					     Ts = Tq * Tr;					     Tv = ii[WS(rs, 12)];					}					To = FMA(Tm, Tn, Tk);					T1W = FNMS(Tm, Tj, T1V);				   }			      }			 }			 {			      E T19, T1b, T18, T2i, T1a, T2j;			      {				   E TE, T22, TK, T24;				   {					E TA, TD, TB, T21, TG, TJ, TH, T23, T1Y, Tw, T1X;					TA = ri[WS(rs, 2)];					Tw = FMA(Tu, Tv, Ts);					T1X = Tq * Tv;					TD = ii[WS(rs, 2)];					TB = Tz * TA;					Tx = To + Tw;					T3M = To - Tw;					T1Y = FNMS(Tu, Tr, T1X);					T21 = Tz * TD;					TG = ri[WS(rs, 10)];					TJ = ii[WS(rs, 10)];					T1Z = T1W - T1Y;					T3w = T1W + T1Y;					TH = TF * TG;					T23 = TF * TJ;					TE = FMA(TC, TD, TB);					T22 = FNMS(TC, TA, T21);					TK = FMA(TI, TJ, TH);					T24 = FNMS(TI, TG, T23);				   }				   {					E T15, T17, T16, T2h;					T15 = ri[WS(rs, 1)];					T17 = ii[WS(rs, 1)];					TL = TE + TK;					T26 = TE - TK;					T25 = T22 - T24;					T37 = T22 + T24;					T16 = T2 * T15;					T2h = T2 * T17;					T19 = ri[WS(rs, 9)];					T1b = ii[WS(rs, 9)];					T18 = FMA(T5, T17, T16);					T2i = FNMS(T5, T15, T2h);					T1a = T3 * T19;					T2j = T3 * T1b;				   }			      }			      {				   E T1n, T1q, T1l, T2q, T1o, T2r;				   {					E T1g, T1k, T1h, T2p, T1c, T2k;					T1g = ri[WS(rs, 5)];					T1k = ii[WS(rs, 5)];					T1c = FMA(T6, T1b, T1a);					T2k = FNMS(T6, T19, T2j);					T1h = T1f * T1g;					T2p = T1f * T1k;					T1d = T18 + T1c;					T2o = T18 - T1c;					T2l = T2i - T2k;					T3c = T2i + T2k;					T1n = ri[WS(rs, 13)];					T1q = ii[WS(rs, 13)];					T1l = FMA(T1j, T1k, T1h);					T2q = FNMS(T1j, T1g, T2p);					T1o = T1m * T1n;					T2r = T1m * T1q;				   }				   {					E TQ, TU, TR, T29, T1r, T2s;					TQ = ri[WS(rs, 14)];					TU = ii[WS(rs, 14)];					T1r = FMA(T1p, T1q, T1o);					T2s = FNMS(T1p, T1n, T2r);					TR = TP * TQ;					T29 = TP * TU;					T1s = T1l + T1r;					T2m = T1l - T1r;					T2t = T2q - T2s;					T3d = T2q + T2s;					TX = ri[WS(rs, 6)];					T10 = ii[WS(rs, 6)];					TV = FMA(TT, TU, TR);					T2a = FNMS(TT, TQ, T29);					TY = TW * TX;					T2b = TW * T10;				   }			      }			 }		    }		    {			 E T36, T3G, T3b, T3g, T28, T2d, T3F, T39, T3e, T3q, T3C, T3j, T3u, T3t;			 {			      E T3D, T1T, T3r, T14, T3E, T3s;			      {				   E Ty, T3B, T11, T2c, T13, T3v;				   T36 = Te - Tx;				   Ty = Te + Tx;				   T3B = T3w + T3A;				   T3G = T3A - T3w;				   T11 = FMA(TZ, T10, TY);				   T2c = FNMS(TZ, TX, T2b);				   {					E T1t, T1S, T12, T38;					T3b = T1d - T1s;					T1t = T1d + T1s;					T1S = T1G + T1R;					T3g = T1G - T1R;					T12 = TV + T11;					T28 = TV - T11;					T2d = T2a - T2c;					T38 = T2a + T2c;					T3D = T1S - T1t;					T1T = T1t + T1S;					T13 = TL + T12;					T3F = T12 - TL;					T39 = T37 - T38;					T3v = T37 + T38;				   }				   T3e = T3c - T3d;				   T3r = T3c + T3d;				   T3q = Ty - T13;				   T14 = Ty + T13;				   T3E = T3B - T3v;				   T3C = T3v + T3B;				   T3s = T3h + T3i;				   T3j = T3h - T3i;			      }			      ri[WS(rs, 8)] = T14 - T1T;			      ri[0] = T14 + T1T;			      ii[WS(rs, 12)] = T3E - T3D;			      T3u = T3r + T3s;			      T3t = T3r - T3s;			      ii[WS(rs, 4)] = T3D + T3E;			 }			 {			      E T3m, T3a, T3J, T3H;			      ii[0] = T3u + T3C;			      ii[WS(rs, 8)] = T3C - T3u;			      ri[WS(rs, 4)] = T3q + T3t;			      ri[WS(rs, 12)] = T3q - T3t;			      T3m = T36 - T39;			      T3a = T36 + T39;			      T3J = T3G - T3F;			      T3H = T3F + T3G;			      {				   E T2Q, T20, T3N, T3T, T2J, T2C, T3O, T2f, T34, T30, T2W, T2V, T3U, T2T, T2N;				   E T2v;				   {					E T2R, T27, T2e, T2S;					{					     E T3n, T3f, T3o, T3k;					     T2Q = T1U + T1Z;					     T20 = T1U - T1Z;					     T3n = T3e - T3b;					     T3f = T3b + T3e;					     T3o = T3g + T3j;					     T3k = T3g - T3j;					     T3N = T3L - T3M;					     T3T = T3M + T3L;					     {						  E T3p, T3I, T3K, T3l;						  T3p = T3n - T3o;						  T3I = T3n + T3o;						  T3K = T3k - T3f;						  T3l = T3f + T3k;						  ri[WS(rs, 6)] = FMA(KP707106781, T3p, T3m);						  ri[WS(rs, 14)] = FNMS(KP707106781, T3p, T3m);						  ii[WS(rs, 10)] = FNMS(KP707106781, T3I, T3H);						  ii[WS(rs, 2)] = FMA(KP707106781, T3I, T3H);						  ii[WS(rs, 14)] = FNMS(KP707106781, T3K, T3J);						  ii[WS(rs, 6)] = FMA(KP707106781, T3K, T3J);						  ri[WS(rs, 2)] = FMA(KP707106781, T3l, T3a);						  ri[WS(rs, 10)] = FNMS(KP707106781, T3l, T3a);						  T2R = T26 + T25;						  T27 = T25 - T26;						  T2e = T28 + T2d;						  T2S = T28 - T2d;					     }					}					{					     E T2Y, T2Z, T2n, T2u;					     T2J = T2D - T2I;					     T2Y = T2D + T2I;					     T2Z = T2A - T2B;					     T2C = T2A + T2B;					     T3O = T27 + T2e;					     T2f = T27 - T2e;					     T34 = FMA(KP414213562, T2Y, T2Z);					     T30 = FNMS(KP414213562, T2Z, T2Y);					     T2W = T2l - T2m;					     T2n = T2l + T2m;					     T2u = T2o - T2t;					     T2V = T2o + T2t;					     T3U = T2S - T2R;					     T2T = T2R + T2S;					     T2N = FNMS(KP414213562, T2n, T2u);					     T2v = FMA(KP414213562, T2u, T2n);					}				   }				   {					E T33, T2X, T3X, T3Y;					{					     E T2M, T2g, T2O, T2K, T3V, T3W, T2P, T2L;					     T2M = FNMS(KP707106781, T2f, T20);					     T2g = FMA(KP707106781, T2f, T20);					     T33 = FNMS(KP414213562, T2V, T2W);					     T2X = FMA(KP414213562, T2W, T2V);					     T2O = FMA(KP414213562, T2C, T2J);					     T2K = FNMS(KP414213562, T2J, T2C);					     T3V = FMA(KP707106781, T3U, T3T);					     T3X = FNMS(KP707106781, T3U, T3T);					     T3W = T2O - T2N;					     T2P = T2N + T2O;					     T3Y = T2v + T2K;					     T2L = T2v - T2K;					     ii[WS(rs, 11)] = FNMS(KP923879532, T3W, T3V);					     ii[WS(rs, 3)] = FMA(KP923879532, T3W, T3V);					     ri[WS(rs, 3)] = FMA(KP923879532, T2L, T2g);					     ri[WS(rs, 11)] = FNMS(KP923879532, T2L, T2g);					     ri[WS(rs, 15)] = FMA(KP923879532, T2P, T2M);					     ri[WS(rs, 7)] = FNMS(KP923879532, T2P, T2M);					}					{					     E T32, T3P, T3Q, T35, T2U, T31;					     T32 = FNMS(KP707106781, T2T, T2Q);					     T2U = FMA(KP707106781, T2T, T2Q);					     T31 = T2X + T30;					     T3S = T30 - T2X;					     T3R = FNMS(KP707106781, T3O, T3N);					     T3P = FMA(KP707106781, T3O, T3N);					     ii[WS(rs, 15)] = FMA(KP923879532, T3Y, T3X);					     ii[WS(rs, 7)] = FNMS(KP923879532, T3Y, T3X);					     ri[WS(rs, 1)] = FMA(KP923879532, T31, T2U);					     ri[WS(rs, 9)] = FNMS(KP923879532, T31, T2U);					     T3Q = T33 + T34;					     T35 = T33 - T34;					     ii[WS(rs, 9)] = FNMS(KP923879532, T3Q, T3P);					     ii[WS(rs, 1)] = FMA(KP923879532, T3Q, T3P);					     ri[WS(rs, 5)] = FMA(KP923879532, T35, T32);					     ri[WS(rs, 13)] = FNMS(KP923879532, T35, T32);					}				   }			      }			 }		    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -