⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1_16.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:42 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include t.h *//* * This function contains 174 FP additions, 100 FP multiplications, * (or, 104 additions, 30 multiplications, 70 fused multiply/add), * 97 stack variables, 3 constants, and 64 memory accesses */#include "t.h"static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP414213562, +0.414213562373095048801688724209698078569671875);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT m;     for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(rs)) {	  E T3G, T3F;	  {	       E T3z, T3o, T8, T1I, T2o, T35, T2r, T1s, T2w, T36, T2p, T1F, T3k, T1N, T3A;	       E Tl, T1T, T2V, T1U, Tz, T29, T30, T2c, T11, TB, TE, T2h, T31, T2a, T1e;	       E TC, T1X, TH, TK, TG, TD, TJ;	       {		    E Ta, Td, Tb, T1J, Tg, Tj, Tf, Tc, Ti;		    {			 E T1h, T1k, T1n, T2k, T1i, T1q, T1m, T1j, T1p;			 {			      E T1, T3n, T3, T6, T2, T5;			      T1 = ri[0];			      T3n = ii[0];			      T3 = ri[WS(rs, 8)];			      T6 = ii[WS(rs, 8)];			      T2 = W[14];			      T5 = W[15];			      {				   E T3l, T4, T1g, T3m, T7;				   T1h = ri[WS(rs, 15)];				   T1k = ii[WS(rs, 15)];				   T3l = T2 * T6;				   T4 = T2 * T3;				   T1g = W[28];				   T1n = ri[WS(rs, 7)];				   T3m = FNMS(T5, T3, T3l);				   T7 = FMA(T5, T6, T4);				   T2k = T1g * T1k;				   T1i = T1g * T1h;				   T3z = T3n - T3m;				   T3o = T3m + T3n;				   T8 = T1 + T7;				   T1I = T1 - T7;				   T1q = ii[WS(rs, 7)];				   T1m = W[12];			      }			      T1j = W[29];			      T1p = W[13];			 }			 {			      E T1u, T1x, T1v, T2s, T1A, T1D, T1z, T1w, T1C;			      {				   E T2l, T1l, T2n, T1r, T2m, T1o, T1t;				   T1u = ri[WS(rs, 3)];				   T2m = T1m * T1q;				   T1o = T1m * T1n;				   T2l = FNMS(T1j, T1h, T2k);				   T1l = FMA(T1j, T1k, T1i);				   T2n = FNMS(T1p, T1n, T2m);				   T1r = FMA(T1p, T1q, T1o);				   T1x = ii[WS(rs, 3)];				   T1t = W[4];				   T2o = T2l - T2n;				   T35 = T2l + T2n;				   T2r = T1l - T1r;				   T1s = T1l + T1r;				   T1v = T1t * T1u;				   T2s = T1t * T1x;			      }			      T1A = ri[WS(rs, 11)];			      T1D = ii[WS(rs, 11)];			      T1z = W[20];			      T1w = W[5];			      T1C = W[21];			      {				   E T2t, T1y, T2v, T1E, T2u, T1B, T9;				   Ta = ri[WS(rs, 4)];				   T2u = T1z * T1D;				   T1B = T1z * T1A;				   T2t = FNMS(T1w, T1u, T2s);				   T1y = FMA(T1w, T1x, T1v);				   T2v = FNMS(T1C, T1A, T2u);				   T1E = FMA(T1C, T1D, T1B);				   Td = ii[WS(rs, 4)];				   T9 = W[6];				   T2w = T2t - T2v;				   T36 = T2t + T2v;				   T2p = T1y - T1E;				   T1F = T1y + T1E;				   Tb = T9 * Ta;				   T1J = T9 * Td;			      }			      Tg = ri[WS(rs, 12)];			      Tj = ii[WS(rs, 12)];			      Tf = W[22];			      Tc = W[7];			      Ti = W[23];			 }		    }		    {			 E TQ, TT, TR, T25, TW, TZ, TV, TS, TY;			 {			      E To, Tr, Tp, T1P, Tu, Tx, Tt, Tq, Tw;			      {				   E T1K, Te, T1M, Tk, T1L, Th, Tn;				   To = ri[WS(rs, 2)];				   T1L = Tf * Tj;				   Th = Tf * Tg;				   T1K = FNMS(Tc, Ta, T1J);				   Te = FMA(Tc, Td, Tb);				   T1M = FNMS(Ti, Tg, T1L);				   Tk = FMA(Ti, Tj, Th);				   Tr = ii[WS(rs, 2)];				   Tn = W[2];				   T3k = T1K + T1M;				   T1N = T1K - T1M;				   T3A = Te - Tk;				   Tl = Te + Tk;				   Tp = Tn * To;				   T1P = Tn * Tr;			      }			      Tu = ri[WS(rs, 10)];			      Tx = ii[WS(rs, 10)];			      Tt = W[18];			      Tq = W[3];			      Tw = W[19];			      {				   E T1Q, Ts, T1S, Ty, T1R, Tv, TP;				   TQ = ri[WS(rs, 1)];				   T1R = Tt * Tx;				   Tv = Tt * Tu;				   T1Q = FNMS(Tq, To, T1P);				   Ts = FMA(Tq, Tr, Tp);				   T1S = FNMS(Tw, Tu, T1R);				   Ty = FMA(Tw, Tx, Tv);				   TT = ii[WS(rs, 1)];				   TP = W[0];				   T1T = T1Q - T1S;				   T2V = T1Q + T1S;				   T1U = Ts - Ty;				   Tz = Ts + Ty;				   TR = TP * TQ;				   T25 = TP * TT;			      }			      TW = ri[WS(rs, 9)];			      TZ = ii[WS(rs, 9)];			      TV = W[16];			      TS = W[1];			      TY = W[17];			 }			 {			      E T13, T16, T14, T2d, T19, T1c, T18, T15, T1b;			      {				   E T26, TU, T28, T10, T27, TX, T12;				   T13 = ri[WS(rs, 5)];				   T27 = TV * TZ;				   TX = TV * TW;				   T26 = FNMS(TS, TQ, T25);				   TU = FMA(TS, TT, TR);				   T28 = FNMS(TY, TW, T27);				   T10 = FMA(TY, TZ, TX);				   T16 = ii[WS(rs, 5)];				   T12 = W[8];				   T29 = T26 - T28;				   T30 = T26 + T28;				   T2c = TU - T10;				   T11 = TU + T10;				   T14 = T12 * T13;				   T2d = T12 * T16;			      }			      T19 = ri[WS(rs, 13)];			      T1c = ii[WS(rs, 13)];			      T18 = W[24];			      T15 = W[9];			      T1b = W[25];			      {				   E T2e, T17, T2g, T1d, T2f, T1a, TA;				   TB = ri[WS(rs, 14)];				   T2f = T18 * T1c;				   T1a = T18 * T19;				   T2e = FNMS(T15, T13, T2d);				   T17 = FMA(T15, T16, T14);				   T2g = FNMS(T1b, T19, T2f);				   T1d = FMA(T1b, T1c, T1a);				   TE = ii[WS(rs, 14)];				   TA = W[26];				   T2h = T2e - T2g;				   T31 = T2e + T2g;				   T2a = T17 - T1d;				   T1e = T17 + T1d;				   TC = TA * TB;				   T1X = TA * TE;			      }			      TH = ri[WS(rs, 6)];			      TK = ii[WS(rs, 6)];			      TG = W[10];			      TD = W[27];			      TJ = W[11];			 }		    }	       }	       {		    E T2U, T3u, T2Z, T21, T1W, T34, T2X, T3f, T32, T3t, T1H, T3q, T3e, TO, T3g;		    E T37, T3r, T3s, T3h, T3i;		    {			 E Tm, T1Y, TF, T20, TL, T3p, T1Z, TI;			 T2U = T8 - Tl;			 Tm = T8 + Tl;			 T1Z = TG * TK;			 TI = TG * TH;			 T1Y = FNMS(TD, TB, T1X);			 TF = FMA(TD, TE, TC);			 T20 = FNMS(TJ, TH, T1Z);			 TL = FMA(TJ, TK, TI);			 T3p = T3k + T3o;			 T3u = T3o - T3k;			 {			      E T1f, TM, T1G, T3j, T2W, TN;			      T2Z = T11 - T1e;			      T1f = T11 + T1e;			      T21 = T1Y - T20;			      T2W = T1Y + T20;			      T1W = TF - TL;			      TM = TF + TL;			      T1G = T1s + T1F;			      T34 = T1s - T1F;			      T2X = T2V - T2W;			      T3j = T2V + T2W;			      T3f = T30 + T31;			      T32 = T30 - T31;			      T3t = TM - Tz;			      TN = Tz + TM;			      T3r = T1G - T1f;			      T1H = T1f + T1G;			      T3s = T3p - T3j;			      T3q = T3j + T3p;			      T3e = Tm - TN;			      TO = Tm + TN;			      T3g = T35 + T36;			      T37 = T35 - T36;			 }		    }		    ii[WS(rs, 12)] = T3s - T3r;		    ii[WS(rs, 4)] = T3r + T3s;		    ri[0] = TO + T1H;		    ri[WS(rs, 8)] = TO - T1H;		    T3h = T3f - T3g;		    T3i = T3f + T3g;		    {			 E T3a, T2Y, T3x, T3v, T3b, T33;			 ii[0] = T3i + T3q;			 ii[WS(rs, 8)] = T3q - T3i;			 ri[WS(rs, 4)] = T3e + T3h;			 ri[WS(rs, 12)] = T3e - T3h;			 T3a = T2U - T2X;			 T2Y = T2U + T2X;			 T3x = T3u - T3t;			 T3v = T3t + T3u;			 T3b = T32 - T2Z;			 T33 = T2Z + T32;			 {			      E T2E, T1O, T3B, T3H, T2x, T2q, T3C, T23, T2S, T2O, T2K, T2J, T3I, T2H, T2B;			      E T2j;			      {				   E T2F, T1V, T22, T2G, T3c, T38;				   T2E = T1I + T1N;				   T1O = T1I - T1N;				   T3B = T3z - T3A;				   T3H = T3A + T3z;				   T3c = T34 + T37;				   T38 = T34 - T37;				   T2F = T1U + T1T;				   T1V = T1T - T1U;				   {					E T3d, T3w, T3y, T39;					T3d = T3b - T3c;					T3w = T3b + T3c;					T3y = T38 - T33;					T39 = T33 + T38;					ri[WS(rs, 6)] = FMA(KP707106781, T3d, T3a);					ri[WS(rs, 14)] = FNMS(KP707106781, T3d, T3a);					ii[WS(rs, 10)] = FNMS(KP707106781, T3w, T3v);					ii[WS(rs, 2)] = FMA(KP707106781, T3w, T3v);					ii[WS(rs, 14)] = FNMS(KP707106781, T3y, T3x);					ii[WS(rs, 6)] = FMA(KP707106781, T3y, T3x);					ri[WS(rs, 2)] = FMA(KP707106781, T39, T2Y);					ri[WS(rs, 10)] = FNMS(KP707106781, T39, T2Y);					T22 = T1W + T21;					T2G = T1W - T21;				   }				   {					E T2M, T2N, T2b, T2i;					T2x = T2r - T2w;					T2M = T2r + T2w;					T2N = T2o - T2p;					T2q = T2o + T2p;					T3C = T1V + T22;					T23 = T1V - T22;					T2S = FMA(KP414213562, T2M, T2N);					T2O = FNMS(KP414213562, T2N, T2M);					T2K = T29 - T2a;					T2b = T29 + T2a;					T2i = T2c - T2h;					T2J = T2c + T2h;					T3I = T2G - T2F;					T2H = T2F + T2G;					T2B = FNMS(KP414213562, T2b, T2i);					T2j = FMA(KP414213562, T2i, T2b);				   }			      }			      {				   E T2R, T2L, T3L, T3M;				   {					E T2A, T24, T2C, T2y, T3J, T3K, T2D, T2z;					T2A = FNMS(KP707106781, T23, T1O);					T24 = FMA(KP707106781, T23, T1O);					T2R = FNMS(KP414213562, T2J, T2K);					T2L = FMA(KP414213562, T2K, T2J);					T2C = FMA(KP414213562, T2q, T2x);					T2y = FNMS(KP414213562, T2x, T2q);					T3J = FMA(KP707106781, T3I, T3H);					T3L = FNMS(KP707106781, T3I, T3H);					T3K = T2C - T2B;					T2D = T2B + T2C;					T3M = T2j + T2y;					T2z = T2j - T2y;					ii[WS(rs, 11)] = FNMS(KP923879532, T3K, T3J);					ii[WS(rs, 3)] = FMA(KP923879532, T3K, T3J);					ri[WS(rs, 3)] = FMA(KP923879532, T2z, T24);					ri[WS(rs, 11)] = FNMS(KP923879532, T2z, T24);					ri[WS(rs, 15)] = FMA(KP923879532, T2D, T2A);					ri[WS(rs, 7)] = FNMS(KP923879532, T2D, T2A);				   }				   {					E T2Q, T3D, T3E, T2T, T2I, T2P;					T2Q = FNMS(KP707106781, T2H, T2E);					T2I = FMA(KP707106781, T2H, T2E);					T2P = T2L + T2O;					T3G = T2O - T2L;					T3F = FNMS(KP707106781, T3C, T3B);					T3D = FMA(KP707106781, T3C, T3B);					ii[WS(rs, 15)] = FMA(KP923879532, T3M, T3L);					ii[WS(rs, 7)] = FNMS(KP923879532, T3M, T3L);					ri[WS(rs, 1)] = FMA(KP923879532, T2P, T2I);					ri[WS(rs, 9)] = FNMS(KP923879532, T2P, T2I);					T3E = T2R + T2S;					T2T = T2R - T2S;					ii[WS(rs, 9)] = FNMS(KP923879532, T3E, T3D);					ii[WS(rs, 1)] = FMA(KP923879532, T3E, T3D);					ri[WS(rs, 5)] = FMA(KP923879532, T2T, T2Q);					ri[WS(rs, 13)] = FNMS(KP923879532, T2T, T2Q);				   }			      }			 }		    }	       }	  }	  ii[WS(rs, 13)] = FNMS(KP923879532, T3G, T3F);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -