⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t1_8.c

📁 快速fft变换
💻 C
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:26 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twiddle -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 8 -name t1_8 -include t.h *//* * This function contains 66 FP additions, 36 FP multiplications, * (or, 44 additions, 14 multiplications, 22 fused multiply/add), * 61 stack variables, 1 constants, and 32 memory accesses */#include "t.h"static void t1_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT m;     for (m = mb, W = W + (mb * 14); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 14, MAKE_VOLATILE_STRIDE(rs)) {	  E T1g, T1f, T1e, Tm, T1q, T1o, T1p, TN, T1h, T1i;	  {	       E T1, T1m, T1l, T7, TS, Tk, TQ, Te, To, Tr, T17, TM, T12, Tu, TW;	       E Tp, Tx, Tt, Tq, Tw;	       {		    E T3, T6, T2, T5;		    T1 = ri[0];		    T1m = ii[0];		    T3 = ri[WS(rs, 4)];		    T6 = ii[WS(rs, 4)];		    T2 = W[6];		    T5 = W[7];		    {			 E Ta, Td, T9, Tc;			 {			      E Tg, Tj, Ti, TR, Th, T1k, T4, Tf;			      Tg = ri[WS(rs, 6)];			      Tj = ii[WS(rs, 6)];			      T1k = T2 * T6;			      T4 = T2 * T3;			      Tf = W[10];			      Ti = W[11];			      T1l = FNMS(T5, T3, T1k);			      T7 = FMA(T5, T6, T4);			      TR = Tf * Tj;			      Th = Tf * Tg;			      Ta = ri[WS(rs, 2)];			      Td = ii[WS(rs, 2)];			      TS = FNMS(Ti, Tg, TR);			      Tk = FMA(Ti, Tj, Th);			      T9 = W[2];			      Tc = W[3];			 }			 {			      E TB, TE, TH, T13, TC, TK, TG, TD, TJ, TP, Tb, TA, Tn;			      TB = ri[WS(rs, 7)];			      TE = ii[WS(rs, 7)];			      TP = T9 * Td;			      Tb = T9 * Ta;			      TA = W[12];			      TH = ri[WS(rs, 3)];			      TQ = FNMS(Tc, Ta, TP);			      Te = FMA(Tc, Td, Tb);			      T13 = TA * TE;			      TC = TA * TB;			      TK = ii[WS(rs, 3)];			      TG = W[4];			      TD = W[13];			      TJ = W[5];			      {				   E T14, TF, T16, TL, T15, TI;				   To = ri[WS(rs, 1)];				   T15 = TG * TK;				   TI = TG * TH;				   T14 = FNMS(TD, TB, T13);				   TF = FMA(TD, TE, TC);				   T16 = FNMS(TJ, TH, T15);				   TL = FMA(TJ, TK, TI);				   Tr = ii[WS(rs, 1)];				   Tn = W[0];				   T17 = T14 - T16;				   T1g = T14 + T16;				   TM = TF + TL;				   T12 = TF - TL;			      }			      Tu = ri[WS(rs, 5)];			      TW = Tn * Tr;			      Tp = Tn * To;			      Tx = ii[WS(rs, 5)];			      Tt = W[8];			      Tq = W[1];			      Tw = W[9];			 }		    }	       }	       {		    E T8, T1j, T1n, Tz, T1a, TU, Tl, T1b, T1c, T1v, T1t, T1w, T19, T1u, T1d;		    {			 E T1r, T10, TV, T1s, T11, T18;			 {			      E TO, TX, Ts, TZ, Ty, TT, TY, Tv;			      T8 = T1 + T7;			      TO = T1 - T7;			      TY = Tt * Tx;			      Tv = Tt * Tu;			      TX = FNMS(Tq, To, TW);			      Ts = FMA(Tq, Tr, Tp);			      TZ = FNMS(Tw, Tu, TY);			      Ty = FMA(Tw, Tx, Tv);			      TT = TQ - TS;			      T1j = TQ + TS;			      T1n = T1l + T1m;			      T1r = T1m - T1l;			      T10 = TX - TZ;			      T1f = TX + TZ;			      Tz = Ts + Ty;			      TV = Ts - Ty;			      T1a = TO - TT;			      TU = TO + TT;			      T1s = Te - Tk;			      Tl = Te + Tk;			 }			 T1b = T10 - TV;			 T11 = TV + T10;			 T18 = T12 - T17;			 T1c = T12 + T17;			 T1v = T1s + T1r;			 T1t = T1r - T1s;			 T1w = T18 - T11;			 T19 = T11 + T18;		    }		    ii[WS(rs, 3)] = FMA(KP707106781, T1w, T1v);		    ii[WS(rs, 7)] = FNMS(KP707106781, T1w, T1v);		    ri[WS(rs, 1)] = FMA(KP707106781, T19, TU);		    ri[WS(rs, 5)] = FNMS(KP707106781, T19, TU);		    T1u = T1b + T1c;		    T1d = T1b - T1c;		    ii[WS(rs, 1)] = FMA(KP707106781, T1u, T1t);		    ii[WS(rs, 5)] = FNMS(KP707106781, T1u, T1t);		    ri[WS(rs, 3)] = FMA(KP707106781, T1d, T1a);		    ri[WS(rs, 7)] = FNMS(KP707106781, T1d, T1a);		    T1e = T8 - Tl;		    Tm = T8 + Tl;		    T1q = T1n - T1j;		    T1o = T1j + T1n;		    T1p = TM - Tz;		    TN = Tz + TM;	       }	  }	  ii[WS(rs, 2)] = T1p + T1q;	  ii[WS(rs, 6)] = T1q - T1p;	  ri[0] = Tm + TN;	  ri[WS(rs, 4)] = Tm - TN;	  T1h = T1f - T1g;	  T1i = T1f + T1g;	  ii[0] = T1i + T1o;	  ii[WS(rs, 4)] = T1o - T1i;	  ri[WS(rs, 2)] = T1e + T1h;	  ri[WS(rs, 6)] = T1e - T1h;     }}static const tw_instr twinstr[] = {     {TW_FULL, 0, 8},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 8, "t1_8", twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 };void X(codelet_t1_8) (planner *p) {     X(kdft_dit_register) (p, t1_8, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_twiddle -compact -variables 4 -pipeline-latency 4 -n 8 -name t1_8 -include t.h *//* * This function contains 66 FP additions, 32 FP multiplications, * (or, 52 additions, 18 multiplications, 14 fused multiply/add), * 28 stack variables, 1 constants, and 32 memory accesses */#include "t.h"static void t1_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms){     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     INT m;     for (m = mb, W = W + (mb * 14); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 14, MAKE_VOLATILE_STRIDE(rs)) {	  E T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;	  E TP;	  {	       E T1, T18, T6, T17;	       T1 = ri[0];	       T18 = ii[0];	       {		    E T3, T5, T2, T4;		    T3 = ri[WS(rs, 4)];		    T5 = ii[WS(rs, 4)];		    T2 = W[6];		    T4 = W[7];		    T6 = FMA(T2, T3, T4 * T5);		    T17 = FNMS(T4, T3, T2 * T5);	       }	       T7 = T1 + T6;	       T1e = T18 - T17;	       TH = T1 - T6;	       T19 = T17 + T18;	  }	  {	       E Tz, TS, TE, TT;	       {		    E Tw, Ty, Tv, Tx;		    Tw = ri[WS(rs, 7)];		    Ty = ii[WS(rs, 7)];		    Tv = W[12];		    Tx = W[13];		    Tz = FMA(Tv, Tw, Tx * Ty);		    TS = FNMS(Tx, Tw, Tv * Ty);	       }	       {		    E TB, TD, TA, TC;		    TB = ri[WS(rs, 3)];		    TD = ii[WS(rs, 3)];		    TA = W[4];		    TC = W[5];		    TE = FMA(TA, TB, TC * TD);		    TT = FNMS(TC, TB, TA * TD);	       }	       TF = Tz + TE;	       T13 = TS + TT;	       TR = Tz - TE;	       TU = TS - TT;	  }	  {	       E Tc, TI, Th, TJ;	       {		    E T9, Tb, T8, Ta;		    T9 = ri[WS(rs, 2)];		    Tb = ii[WS(rs, 2)];		    T8 = W[2];		    Ta = W[3];		    Tc = FMA(T8, T9, Ta * Tb);		    TI = FNMS(Ta, T9, T8 * Tb);	       }	       {		    E Te, Tg, Td, Tf;		    Te = ri[WS(rs, 6)];		    Tg = ii[WS(rs, 6)];		    Td = W[10];		    Tf = W[11];		    Th = FMA(Td, Te, Tf * Tg);		    TJ = FNMS(Tf, Te, Td * Tg);	       }	       Ti = Tc + Th;	       T1f = Tc - Th;	       TK = TI - TJ;	       T16 = TI + TJ;	  }	  {	       E To, TN, Tt, TO;	       {		    E Tl, Tn, Tk, Tm;		    Tl = ri[WS(rs, 1)];		    Tn = ii[WS(rs, 1)];		    Tk = W[0];		    Tm = W[1];		    To = FMA(Tk, Tl, Tm * Tn);		    TN = FNMS(Tm, Tl, Tk * Tn);	       }	       {		    E Tq, Ts, Tp, Tr;		    Tq = ri[WS(rs, 5)];		    Ts = ii[WS(rs, 5)];		    Tp = W[8];		    Tr = W[9];		    Tt = FMA(Tp, Tq, Tr * Ts);		    TO = FNMS(Tr, Tq, Tp * Ts);	       }	       Tu = To + Tt;	       T12 = TN + TO;	       TM = To - Tt;	       TP = TN - TO;	  }	  {	       E Tj, TG, T1b, T1c;	       Tj = T7 + Ti;	       TG = Tu + TF;	       ri[WS(rs, 4)] = Tj - TG;	       ri[0] = Tj + TG;	       {		    E T15, T1a, T11, T14;		    T15 = T12 + T13;		    T1a = T16 + T19;		    ii[0] = T15 + T1a;		    ii[WS(rs, 4)] = T1a - T15;		    T11 = T7 - Ti;		    T14 = T12 - T13;		    ri[WS(rs, 6)] = T11 - T14;		    ri[WS(rs, 2)] = T11 + T14;	       }	       T1b = TF - Tu;	       T1c = T19 - T16;	       ii[WS(rs, 2)] = T1b + T1c;	       ii[WS(rs, 6)] = T1c - T1b;	       {		    E TX, T1g, T10, T1d, TY, TZ;		    TX = TH - TK;		    T1g = T1e - T1f;		    TY = TP - TM;		    TZ = TR + TU;		    T10 = KP707106781 * (TY - TZ);		    T1d = KP707106781 * (TY + TZ);		    ri[WS(rs, 7)] = TX - T10;		    ii[WS(rs, 5)] = T1g - T1d;		    ri[WS(rs, 3)] = TX + T10;		    ii[WS(rs, 1)] = T1d + T1g;	       }	       {		    E TL, T1i, TW, T1h, TQ, TV;		    TL = TH + TK;		    T1i = T1f + T1e;		    TQ = TM + TP;		    TV = TR - TU;		    TW = KP707106781 * (TQ + TV);		    T1h = KP707106781 * (TV - TQ);		    ri[WS(rs, 5)] = TL - TW;		    ii[WS(rs, 7)] = T1i - T1h;		    ri[WS(rs, 1)] = TL + TW;		    ii[WS(rs, 3)] = T1h + T1i;	       }	  }     }}static const tw_instr twinstr[] = {     {TW_FULL, 0, 8},     {TW_NEXT, 1, 0}};static const ct_desc desc = { 8, "t1_8", twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 };void X(codelet_t1_8) (planner *p) {     X(kdft_dit_register) (p, t1_8, &desc);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -