📄 n1_64.c
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:08 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_notw -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include n.h *//* * This function contains 912 FP additions, 392 FP multiplications, * (or, 520 additions, 0 multiplications, 392 fused multiply/add), * 202 stack variables, 15 constants, and 256 memory accesses */#include "n.h"static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){ DK(KP956940335, +0.956940335732208864935797886980269969482849206); DK(KP881921264, +0.881921264348355029712756863660388349508442621); DK(KP534511135, +0.534511135950791641089685961295362908582039528); DK(KP303346683, +0.303346683607342391675883946941299872384187453); DK(KP995184726, +0.995184726672196886244836953109479921575474869); DK(KP773010453, +0.773010453362736960810906609758469800971041293); DK(KP820678790, +0.820678790828660330972281985331011598767386482); DK(KP098491403, +0.098491403357164253077197521291327432293052451); DK(KP980785280, +0.980785280403230449126182236134239036973933731); DK(KP831469612, +0.831469612302545237078788377617905756738560812); DK(KP668178637, +0.668178637919298919997757686523080761552472251); DK(KP198912367, +0.198912367379658006911597622644676228597850501); DK(KP923879532, +0.923879532511286756128183189396788286822416626); DK(KP707106781, +0.707106781186547524400844362104849039284835938); DK(KP414213562, +0.414213562373095048801688724209698078569671875); INT i; for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) { E T9b, T9e; { E T7B, T37, T5Z, T8F, Td9, Tf, TcB, TbB, T7C, T62, TdH, T2i, Tcb, Tah, T8G; E T3e, Tu, TdI, Tak, TbC, TbD, Tan, Tda, T2x, T65, T3m, T8I, T7G, T8J, T7J; E T64, T3t, Tdd, TK, Tce, Tas, Tcf, Tav, Tdc, T2N, T6G, T3G, T9k, T7O, T9l; E T7R, T6H, T3N, TdA, T1L, Tct, Tbs, Teo, Tdx, T6Y, T5j, T6V, T5Q, T9z, T8y; E Tcw, Tbb, T9C, T8n, Tdf, TZ, Tch, Taz, Tci, TaC, Tdg, T32, T6J, T3Z, T9n; E T7V, T9o, T7Y, T6K, T46, Tdp, T1g, Tcm, Tb1, Tej, Tdm, T6R, T4q, T6O, T4X; E T9s, T8f, Tcp, TaK, T9v, T84, Tdn, T1v, Tcq, Tb4, Tek, Tds, T6P, T4N, T6S; E T50, T9w, T8i, Tcn, TaV, T9t, T8b, Tdy, T20, Tcx, Tbv, Tep, TdD, T8q, T6W; E T5G, T6Z, T5T, T8t, T9D, T8B, Tcu, Tbm, T8l, T8m; { E T3s, T3p, T3M, T3J; { E Taf, T3d, T3a, Tag; { E T35, T3, T5Y, T26, T5X, T6, T36, T29, Tb, T39, Ta, T38, T2d, Tc, T2e; E T2f; { E T4, T5, T27, T28; { E T1, T2, T24, T25; T1 = ri[0]; T2 = ri[WS(is, 32)]; T24 = ii[0]; T25 = ii[WS(is, 32)]; T4 = ri[WS(is, 16)]; T35 = T1 - T2; T3 = T1 + T2; T5Y = T24 - T25; T26 = T24 + T25; T5 = ri[WS(is, 48)]; T27 = ii[WS(is, 16)]; T28 = ii[WS(is, 48)]; } { E T8, T9, T2b, T2c; T8 = ri[WS(is, 8)]; T5X = T4 - T5; T6 = T4 + T5; T36 = T27 - T28; T29 = T27 + T28; T9 = ri[WS(is, 40)]; T2b = ii[WS(is, 8)]; T2c = ii[WS(is, 40)]; Tb = ri[WS(is, 56)]; T39 = T8 - T9; Ta = T8 + T9; T38 = T2b - T2c; T2d = T2b + T2c; Tc = ri[WS(is, 24)]; T2e = ii[WS(is, 56)]; T2f = ii[WS(is, 24)]; } } { E T3b, T3c, T2g, T7, Te, Tbz, Td; T7B = T35 + T36; T37 = T35 - T36; T3b = Tb - Tc; Td = Tb + Tc; T3c = T2e - T2f; T2g = T2e + T2f; T5Z = T5X + T5Y; T8F = T5Y - T5X; Taf = T3 - T6; T7 = T3 + T6; Te = Ta + Td; Tbz = Td - Ta; { E T2a, T60, T61, TbA, T2h; TbA = T26 - T29; T2a = T26 + T29; T3d = T3b + T3c; T60 = T3b - T3c; Td9 = T7 - Te; Tf = T7 + Te; TcB = TbA - Tbz; TbB = Tbz + TbA; T61 = T39 + T38; T3a = T38 - T39; T2h = T2d + T2g; Tag = T2d - T2g; T7C = T61 + T60; T62 = T60 - T61; TdH = T2a - T2h; T2i = T2a + T2h; } } } { E T3j, Ti, T3h, T2l, T3g, Tl, T3k, T2o, Tq, T3q, Tp, T3o, T2s, Tr, T2t; E T2u; { E Tj, Tk, T2m, T2n; { E Tg, Th, T2j, T2k; Tg = ri[WS(is, 4)]; Tcb = Taf - Tag; Tah = Taf + Tag; T8G = T3a + T3d; T3e = T3a - T3d; Th = ri[WS(is, 36)]; T2j = ii[WS(is, 4)]; T2k = ii[WS(is, 36)]; Tj = ri[WS(is, 20)]; T3j = Tg - Th; Ti = Tg + Th; T3h = T2j - T2k; T2l = T2j + T2k; Tk = ri[WS(is, 52)]; T2m = ii[WS(is, 20)]; T2n = ii[WS(is, 52)]; } { E Tn, To, T2q, T2r; Tn = ri[WS(is, 60)]; T3g = Tj - Tk; Tl = Tj + Tk; T3k = T2m - T2n; T2o = T2m + T2n; To = ri[WS(is, 28)]; T2q = ii[WS(is, 60)]; T2r = ii[WS(is, 28)]; Tq = ri[WS(is, 12)]; T3q = Tn - To; Tp = Tn + To; T3o = T2q - T2r; T2s = T2q + T2r; Tr = ri[WS(is, 44)]; T2t = ii[WS(is, 12)]; T2u = ii[WS(is, 44)]; } } { E T3n, T3r, T2p, T2w; { E Tai, Tm, T2v, Tal, Tt, Taj, Ts, Tam; Tai = Ti - Tl; Tm = Ti + Tl; T3n = Tq - Tr; Ts = Tq + Tr; T3r = T2t - T2u; T2v = T2t + T2u; Tal = Tp - Ts; Tt = Tp + Ts; Taj = T2l - T2o; T2p = T2l + T2o; Tam = T2s - T2v; T2w = T2s + T2v; Tu = Tm + Tt; TdI = Tt - Tm; Tak = Tai + Taj; TbC = Taj - Tai; TbD = Tal + Tam; Tan = Tal - Tam; } { E T7F, T7E, T3i, T3l, T7H, T7I; T7F = T3h - T3g; T3i = T3g + T3h; T3l = T3j - T3k; T7E = T3j + T3k; Tda = T2p - T2w; T2x = T2p + T2w; T65 = FNMS(KP414213562, T3i, T3l); T3m = FMA(KP414213562, T3l, T3i); T3s = T3q - T3r; T7H = T3q + T3r; T7I = T3o - T3n; T3p = T3n + T3o; T8I = FNMS(KP414213562, T7E, T7F); T7G = FMA(KP414213562, T7F, T7E); T8J = FMA(KP414213562, T7H, T7I); T7J = FNMS(KP414213562, T7I, T7H); } } } } { E T3H, Ty, T3x, T2B, T3w, TB, T3I, T2E, TI, T2L, T3z, TF, T3E, T3K, T2I; E T3A; { E T2z, T2A, Tz, TA, Tw, Tx, T2C, T2D; Tw = ri[WS(is, 2)]; Tx = ri[WS(is, 34)]; T2z = ii[WS(is, 2)]; T64 = FMA(KP414213562, T3p, T3s); T3t = FNMS(KP414213562, T3s, T3p); T3H = Tw - Tx; Ty = Tw + Tx; T2A = ii[WS(is, 34)]; Tz = ri[WS(is, 18)]; TA = ri[WS(is, 50)]; T2C = ii[WS(is, 18)]; T3x = T2z - T2A; T2B = T2z + T2A; T3w = Tz - TA; TB = Tz + TA; T2D = ii[WS(is, 50)]; { E T2J, T3C, T2K, TG, TH; TG = ri[WS(is, 58)]; TH = ri[WS(is, 26)]; T2J = ii[WS(is, 58)]; T3I = T2C - T2D; T2E = T2C + T2D; T3C = TG - TH; TI = TG + TH; T2K = ii[WS(is, 26)]; { E T2G, T2H, TD, TE, T3D; TD = ri[WS(is, 10)]; TE = ri[WS(is, 42)]; T3D = T2J - T2K; T2L = T2J + T2K; T2G = ii[WS(is, 10)]; T3z = TD - TE; TF = TD + TE; T2H = ii[WS(is, 42)]; T3E = T3C - T3D; T3K = T3C + T3D; T2I = T2G + T2H; T3A = T2G - T2H; } } } { E T3L, T3B, T2F, T2M; { E Tat, Taq, Tar, TC, TJ, Tau; Tat = Ty - TB; TC = Ty + TB; TJ = TF + TI; Taq = TI - TF; T3L = T3A - T3z; T3B = T3z + T3A; Tdd = TC - TJ; TK = TC + TJ; Tar = T2B - T2E; T2F = T2B + T2E; Tau = T2I - T2L; T2M = T2I + T2L; Tce = Tar - Taq; Tas = Taq + Tar; Tcf = Tat - Tau; Tav = Tat + Tau; } { E T7M, T7Q, T7N, T3y, T3F, T7P; T7M = T3x - T3w; T3y = T3w + T3x; T3F = T3B - T3E; T7Q = T3B + T3E; Tdc = T2F - T2M; T2N = T2F + T2M; T6G = FMA(KP707106781, T3F, T3y); T3G = FNMS(KP707106781, T3F, T3y); T7N = T3L + T3K; T3M = T3K - T3L; T3J = T3H - T3I; T7P = T3H + T3I; T9k = FNMS(KP707106781, T7N, T7M); T7O = FMA(KP707106781, T7N, T7M); T9l = FNMS(KP707106781, T7Q, T7P); T7R = FMA(KP707106781, T7Q, T7P); } } } { E T5I, T1z, Tb8, T56, T53, T1C, Tb9, T5L, T1J, Tbq, T58, T1G, T5N, T5h, Tbp; E T5b; { E T54, T55, T1A, T1B, T1x, T1y, T5J, T5K; T1x = ri[WS(is, 63)]; T1y = ri[WS(is, 31)]; T54 = ii[WS(is, 63)]; T6H = FMA(KP707106781, T3M, T3J); T3N = FNMS(KP707106781, T3M, T3J); T5I = T1x - T1y; T1z = T1x + T1y; T55 = ii[WS(is, 31)]; T1A = ri[WS(is, 15)]; T1B = ri[WS(is, 47)]; T5J = ii[WS(is, 15)]; Tb8 = T54 + T55; T56 = T54 - T55; T53 = T1A - T1B; T1C = T1A + T1B; T5K = ii[WS(is, 47)]; { E T5e, T5d, T5f, T1H, T1I; T1H = ri[WS(is, 55)]; T1I = ri[WS(is, 23)]; T5e = ii[WS(is, 55)]; Tb9 = T5J + T5K; T5L = T5J - T5K; T5d = T1H - T1I; T1J = T1H + T1I; T5f = ii[WS(is, 23)]; { E T59, T5a, T1E, T1F, T5g; T1E = ri[WS(is, 7)]; T1F = ri[WS(is, 39)]; T5g = T5e - T5f; Tbq = T5e + T5f; T59 = ii[WS(is, 7)]; T58 = T1E - T1F; T1G = T1E + T1F; T5a = ii[WS(is, 39)]; T5N = T5d + T5g; T5h = T5d - T5g; Tbp = T59 + T5a; T5b = T59 - T5a; } } } { E Tb7, T5O, Tba, T57, T5i, T8x, T8w, T5M, T5P; { E Tbo, T5c, Tbr, Tdw, T1D, T1K, Tdv; Tbo = T1z - T1C; T1D = T1z + T1C; T1K = T1G + T1J; Tb7 = T1J - T1G; T5c = T58 + T5b; T5O = T5b - T58; TdA = T1D - T1K; T1L = T1D + T1K; Tbr = Tbp - Tbq; Tdw = Tbp + Tbq; Tba = Tb8 - Tb9; Tdv = Tb8 + Tb9; T8l = T56 - T53; T57 = T53 + T56; Tct = Tbo - Tbr; Tbs = Tbo + Tbr; Teo = Tdv + Tdw; Tdx = Tdv - Tdw; T5i = T5c - T5h; T8x = T5c + T5h; } T8w = T5I + T5L; T5M = T5I - T5L; T5P = T5N - T5O; T8m = T5O + T5N; T6Y = FMA(KP707106781, T5i, T57); T5j = FNMS(KP707106781, T5i, T57); T6V = FMA(KP707106781, T5P, T5M); T5Q = FNMS(KP707106781, T5P, T5M); T9z = FNMS(KP707106781, T8x, T8w); T8y = FMA(KP707106781, T8x, T8w); Tcw = Tba - Tb7; Tbb = Tb7 + Tba; } } } { E T82, T83, T45, T42, T87, T8a; { E T40, TN, T3Q, T2Q, T3P, TQ, T41, T2T, TX, T30, T3S, TU, T3X, T43, T2X; E T3T; { E T2O, T2P, TO, TP, TL, TM, T2R, T2S; TL = ri[WS(is, 62)]; TM = ri[WS(is, 30)]; T2O = ii[WS(is, 62)]; T9C = FNMS(KP707106781, T8m, T8l); T8n = FMA(KP707106781, T8m, T8l); T40 = TL - TM; TN = TL + TM; T2P = ii[WS(is, 30)]; TO = ri[WS(is, 14)]; TP = ri[WS(is, 46)]; T2R = ii[WS(is, 14)]; T3Q = T2O - T2P; T2Q = T2O + T2P; T3P = TO - TP; TQ = TO + TP; T2S = ii[WS(is, 46)]; { E T2Y, T3V, T2Z, TV, TW; TV = ri[WS(is, 54)]; TW = ri[WS(is, 22)]; T2Y = ii[WS(is, 54)]; T41 = T2R - T2S; T2T = T2R + T2S; T3V = TV - TW; TX = TV + TW; T2Z = ii[WS(is, 22)]; { E T2V, T2W, TS, TT, T3W; TS = ri[WS(is, 6)]; TT = ri[WS(is, 38)]; T3W = T2Y - T2Z; T30 = T2Y + T2Z; T2V = ii[WS(is, 6)]; T3S = TS - TT; TU = TS + TT; T2W = ii[WS(is, 38)]; T3X = T3V - T3W; T43 = T3V + T3W; T2X = T2V + T2W; T3T = T2V - T2W; } } } { E T44, T3U, T2U, T31; { E TaA, Tax, Tay, TR, TY, TaB;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -