⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 n1_64.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 5 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:37:08 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_notw -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include n.h *//* * This function contains 912 FP additions, 392 FP multiplications, * (or, 520 additions, 0 multiplications, 392 fused multiply/add), * 202 stack variables, 15 constants, and 256 memory accesses */#include "n.h"static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){     DK(KP956940335, +0.956940335732208864935797886980269969482849206);     DK(KP881921264, +0.881921264348355029712756863660388349508442621);     DK(KP534511135, +0.534511135950791641089685961295362908582039528);     DK(KP303346683, +0.303346683607342391675883946941299872384187453);     DK(KP995184726, +0.995184726672196886244836953109479921575474869);     DK(KP773010453, +0.773010453362736960810906609758469800971041293);     DK(KP820678790, +0.820678790828660330972281985331011598767386482);     DK(KP098491403, +0.098491403357164253077197521291327432293052451);     DK(KP980785280, +0.980785280403230449126182236134239036973933731);     DK(KP831469612, +0.831469612302545237078788377617905756738560812);     DK(KP668178637, +0.668178637919298919997757686523080761552472251);     DK(KP198912367, +0.198912367379658006911597622644676228597850501);     DK(KP923879532, +0.923879532511286756128183189396788286822416626);     DK(KP707106781, +0.707106781186547524400844362104849039284835938);     DK(KP414213562, +0.414213562373095048801688724209698078569671875);     INT i;     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {	  E T9b, T9e;	  {	       E T7B, T37, T5Z, T8F, Td9, Tf, TcB, TbB, T7C, T62, TdH, T2i, Tcb, Tah, T8G;	       E T3e, Tu, TdI, Tak, TbC, TbD, Tan, Tda, T2x, T65, T3m, T8I, T7G, T8J, T7J;	       E T64, T3t, Tdd, TK, Tce, Tas, Tcf, Tav, Tdc, T2N, T6G, T3G, T9k, T7O, T9l;	       E T7R, T6H, T3N, TdA, T1L, Tct, Tbs, Teo, Tdx, T6Y, T5j, T6V, T5Q, T9z, T8y;	       E Tcw, Tbb, T9C, T8n, Tdf, TZ, Tch, Taz, Tci, TaC, Tdg, T32, T6J, T3Z, T9n;	       E T7V, T9o, T7Y, T6K, T46, Tdp, T1g, Tcm, Tb1, Tej, Tdm, T6R, T4q, T6O, T4X;	       E T9s, T8f, Tcp, TaK, T9v, T84, Tdn, T1v, Tcq, Tb4, Tek, Tds, T6P, T4N, T6S;	       E T50, T9w, T8i, Tcn, TaV, T9t, T8b, Tdy, T20, Tcx, Tbv, Tep, TdD, T8q, T6W;	       E T5G, T6Z, T5T, T8t, T9D, T8B, Tcu, Tbm, T8l, T8m;	       {		    E T3s, T3p, T3M, T3J;		    {			 E Taf, T3d, T3a, Tag;			 {			      E T35, T3, T5Y, T26, T5X, T6, T36, T29, Tb, T39, Ta, T38, T2d, Tc, T2e;			      E T2f;			      {				   E T4, T5, T27, T28;				   {					E T1, T2, T24, T25;					T1 = ri[0];					T2 = ri[WS(is, 32)];					T24 = ii[0];					T25 = ii[WS(is, 32)];					T4 = ri[WS(is, 16)];					T35 = T1 - T2;					T3 = T1 + T2;					T5Y = T24 - T25;					T26 = T24 + T25;					T5 = ri[WS(is, 48)];					T27 = ii[WS(is, 16)];					T28 = ii[WS(is, 48)];				   }				   {					E T8, T9, T2b, T2c;					T8 = ri[WS(is, 8)];					T5X = T4 - T5;					T6 = T4 + T5;					T36 = T27 - T28;					T29 = T27 + T28;					T9 = ri[WS(is, 40)];					T2b = ii[WS(is, 8)];					T2c = ii[WS(is, 40)];					Tb = ri[WS(is, 56)];					T39 = T8 - T9;					Ta = T8 + T9;					T38 = T2b - T2c;					T2d = T2b + T2c;					Tc = ri[WS(is, 24)];					T2e = ii[WS(is, 56)];					T2f = ii[WS(is, 24)];				   }			      }			      {				   E T3b, T3c, T2g, T7, Te, Tbz, Td;				   T7B = T35 + T36;				   T37 = T35 - T36;				   T3b = Tb - Tc;				   Td = Tb + Tc;				   T3c = T2e - T2f;				   T2g = T2e + T2f;				   T5Z = T5X + T5Y;				   T8F = T5Y - T5X;				   Taf = T3 - T6;				   T7 = T3 + T6;				   Te = Ta + Td;				   Tbz = Td - Ta;				   {					E T2a, T60, T61, TbA, T2h;					TbA = T26 - T29;					T2a = T26 + T29;					T3d = T3b + T3c;					T60 = T3b - T3c;					Td9 = T7 - Te;					Tf = T7 + Te;					TcB = TbA - Tbz;					TbB = Tbz + TbA;					T61 = T39 + T38;					T3a = T38 - T39;					T2h = T2d + T2g;					Tag = T2d - T2g;					T7C = T61 + T60;					T62 = T60 - T61;					TdH = T2a - T2h;					T2i = T2a + T2h;				   }			      }			 }			 {			      E T3j, Ti, T3h, T2l, T3g, Tl, T3k, T2o, Tq, T3q, Tp, T3o, T2s, Tr, T2t;			      E T2u;			      {				   E Tj, Tk, T2m, T2n;				   {					E Tg, Th, T2j, T2k;					Tg = ri[WS(is, 4)];					Tcb = Taf - Tag;					Tah = Taf + Tag;					T8G = T3a + T3d;					T3e = T3a - T3d;					Th = ri[WS(is, 36)];					T2j = ii[WS(is, 4)];					T2k = ii[WS(is, 36)];					Tj = ri[WS(is, 20)];					T3j = Tg - Th;					Ti = Tg + Th;					T3h = T2j - T2k;					T2l = T2j + T2k;					Tk = ri[WS(is, 52)];					T2m = ii[WS(is, 20)];					T2n = ii[WS(is, 52)];				   }				   {					E Tn, To, T2q, T2r;					Tn = ri[WS(is, 60)];					T3g = Tj - Tk;					Tl = Tj + Tk;					T3k = T2m - T2n;					T2o = T2m + T2n;					To = ri[WS(is, 28)];					T2q = ii[WS(is, 60)];					T2r = ii[WS(is, 28)];					Tq = ri[WS(is, 12)];					T3q = Tn - To;					Tp = Tn + To;					T3o = T2q - T2r;					T2s = T2q + T2r;					Tr = ri[WS(is, 44)];					T2t = ii[WS(is, 12)];					T2u = ii[WS(is, 44)];				   }			      }			      {				   E T3n, T3r, T2p, T2w;				   {					E Tai, Tm, T2v, Tal, Tt, Taj, Ts, Tam;					Tai = Ti - Tl;					Tm = Ti + Tl;					T3n = Tq - Tr;					Ts = Tq + Tr;					T3r = T2t - T2u;					T2v = T2t + T2u;					Tal = Tp - Ts;					Tt = Tp + Ts;					Taj = T2l - T2o;					T2p = T2l + T2o;					Tam = T2s - T2v;					T2w = T2s + T2v;					Tu = Tm + Tt;					TdI = Tt - Tm;					Tak = Tai + Taj;					TbC = Taj - Tai;					TbD = Tal + Tam;					Tan = Tal - Tam;				   }				   {					E T7F, T7E, T3i, T3l, T7H, T7I;					T7F = T3h - T3g;					T3i = T3g + T3h;					T3l = T3j - T3k;					T7E = T3j + T3k;					Tda = T2p - T2w;					T2x = T2p + T2w;					T65 = FNMS(KP414213562, T3i, T3l);					T3m = FMA(KP414213562, T3l, T3i);					T3s = T3q - T3r;					T7H = T3q + T3r;					T7I = T3o - T3n;					T3p = T3n + T3o;					T8I = FNMS(KP414213562, T7E, T7F);					T7G = FMA(KP414213562, T7F, T7E);					T8J = FMA(KP414213562, T7H, T7I);					T7J = FNMS(KP414213562, T7I, T7H);				   }			      }			 }		    }		    {			 E T3H, Ty, T3x, T2B, T3w, TB, T3I, T2E, TI, T2L, T3z, TF, T3E, T3K, T2I;			 E T3A;			 {			      E T2z, T2A, Tz, TA, Tw, Tx, T2C, T2D;			      Tw = ri[WS(is, 2)];			      Tx = ri[WS(is, 34)];			      T2z = ii[WS(is, 2)];			      T64 = FMA(KP414213562, T3p, T3s);			      T3t = FNMS(KP414213562, T3s, T3p);			      T3H = Tw - Tx;			      Ty = Tw + Tx;			      T2A = ii[WS(is, 34)];			      Tz = ri[WS(is, 18)];			      TA = ri[WS(is, 50)];			      T2C = ii[WS(is, 18)];			      T3x = T2z - T2A;			      T2B = T2z + T2A;			      T3w = Tz - TA;			      TB = Tz + TA;			      T2D = ii[WS(is, 50)];			      {				   E T2J, T3C, T2K, TG, TH;				   TG = ri[WS(is, 58)];				   TH = ri[WS(is, 26)];				   T2J = ii[WS(is, 58)];				   T3I = T2C - T2D;				   T2E = T2C + T2D;				   T3C = TG - TH;				   TI = TG + TH;				   T2K = ii[WS(is, 26)];				   {					E T2G, T2H, TD, TE, T3D;					TD = ri[WS(is, 10)];					TE = ri[WS(is, 42)];					T3D = T2J - T2K;					T2L = T2J + T2K;					T2G = ii[WS(is, 10)];					T3z = TD - TE;					TF = TD + TE;					T2H = ii[WS(is, 42)];					T3E = T3C - T3D;					T3K = T3C + T3D;					T2I = T2G + T2H;					T3A = T2G - T2H;				   }			      }			 }			 {			      E T3L, T3B, T2F, T2M;			      {				   E Tat, Taq, Tar, TC, TJ, Tau;				   Tat = Ty - TB;				   TC = Ty + TB;				   TJ = TF + TI;				   Taq = TI - TF;				   T3L = T3A - T3z;				   T3B = T3z + T3A;				   Tdd = TC - TJ;				   TK = TC + TJ;				   Tar = T2B - T2E;				   T2F = T2B + T2E;				   Tau = T2I - T2L;				   T2M = T2I + T2L;				   Tce = Tar - Taq;				   Tas = Taq + Tar;				   Tcf = Tat - Tau;				   Tav = Tat + Tau;			      }			      {				   E T7M, T7Q, T7N, T3y, T3F, T7P;				   T7M = T3x - T3w;				   T3y = T3w + T3x;				   T3F = T3B - T3E;				   T7Q = T3B + T3E;				   Tdc = T2F - T2M;				   T2N = T2F + T2M;				   T6G = FMA(KP707106781, T3F, T3y);				   T3G = FNMS(KP707106781, T3F, T3y);				   T7N = T3L + T3K;				   T3M = T3K - T3L;				   T3J = T3H - T3I;				   T7P = T3H + T3I;				   T9k = FNMS(KP707106781, T7N, T7M);				   T7O = FMA(KP707106781, T7N, T7M);				   T9l = FNMS(KP707106781, T7Q, T7P);				   T7R = FMA(KP707106781, T7Q, T7P);			      }			 }		    }		    {			 E T5I, T1z, Tb8, T56, T53, T1C, Tb9, T5L, T1J, Tbq, T58, T1G, T5N, T5h, Tbp;			 E T5b;			 {			      E T54, T55, T1A, T1B, T1x, T1y, T5J, T5K;			      T1x = ri[WS(is, 63)];			      T1y = ri[WS(is, 31)];			      T54 = ii[WS(is, 63)];			      T6H = FMA(KP707106781, T3M, T3J);			      T3N = FNMS(KP707106781, T3M, T3J);			      T5I = T1x - T1y;			      T1z = T1x + T1y;			      T55 = ii[WS(is, 31)];			      T1A = ri[WS(is, 15)];			      T1B = ri[WS(is, 47)];			      T5J = ii[WS(is, 15)];			      Tb8 = T54 + T55;			      T56 = T54 - T55;			      T53 = T1A - T1B;			      T1C = T1A + T1B;			      T5K = ii[WS(is, 47)];			      {				   E T5e, T5d, T5f, T1H, T1I;				   T1H = ri[WS(is, 55)];				   T1I = ri[WS(is, 23)];				   T5e = ii[WS(is, 55)];				   Tb9 = T5J + T5K;				   T5L = T5J - T5K;				   T5d = T1H - T1I;				   T1J = T1H + T1I;				   T5f = ii[WS(is, 23)];				   {					E T59, T5a, T1E, T1F, T5g;					T1E = ri[WS(is, 7)];					T1F = ri[WS(is, 39)];					T5g = T5e - T5f;					Tbq = T5e + T5f;					T59 = ii[WS(is, 7)];					T58 = T1E - T1F;					T1G = T1E + T1F;					T5a = ii[WS(is, 39)];					T5N = T5d + T5g;					T5h = T5d - T5g;					Tbp = T59 + T5a;					T5b = T59 - T5a;				   }			      }			 }			 {			      E Tb7, T5O, Tba, T57, T5i, T8x, T8w, T5M, T5P;			      {				   E Tbo, T5c, Tbr, Tdw, T1D, T1K, Tdv;				   Tbo = T1z - T1C;				   T1D = T1z + T1C;				   T1K = T1G + T1J;				   Tb7 = T1J - T1G;				   T5c = T58 + T5b;				   T5O = T5b - T58;				   TdA = T1D - T1K;				   T1L = T1D + T1K;				   Tbr = Tbp - Tbq;				   Tdw = Tbp + Tbq;				   Tba = Tb8 - Tb9;				   Tdv = Tb8 + Tb9;				   T8l = T56 - T53;				   T57 = T53 + T56;				   Tct = Tbo - Tbr;				   Tbs = Tbo + Tbr;				   Teo = Tdv + Tdw;				   Tdx = Tdv - Tdw;				   T5i = T5c - T5h;				   T8x = T5c + T5h;			      }			      T8w = T5I + T5L;			      T5M = T5I - T5L;			      T5P = T5N - T5O;			      T8m = T5O + T5N;			      T6Y = FMA(KP707106781, T5i, T57);			      T5j = FNMS(KP707106781, T5i, T57);			      T6V = FMA(KP707106781, T5P, T5M);			      T5Q = FNMS(KP707106781, T5P, T5M);			      T9z = FNMS(KP707106781, T8x, T8w);			      T8y = FMA(KP707106781, T8x, T8w);			      Tcw = Tba - Tb7;			      Tbb = Tb7 + Tba;			 }		    }	       }	       {		    E T82, T83, T45, T42, T87, T8a;		    {			 E T40, TN, T3Q, T2Q, T3P, TQ, T41, T2T, TX, T30, T3S, TU, T3X, T43, T2X;			 E T3T;			 {			      E T2O, T2P, TO, TP, TL, TM, T2R, T2S;			      TL = ri[WS(is, 62)];			      TM = ri[WS(is, 30)];			      T2O = ii[WS(is, 62)];			      T9C = FNMS(KP707106781, T8m, T8l);			      T8n = FMA(KP707106781, T8m, T8l);			      T40 = TL - TM;			      TN = TL + TM;			      T2P = ii[WS(is, 30)];			      TO = ri[WS(is, 14)];			      TP = ri[WS(is, 46)];			      T2R = ii[WS(is, 14)];			      T3Q = T2O - T2P;			      T2Q = T2O + T2P;			      T3P = TO - TP;			      TQ = TO + TP;			      T2S = ii[WS(is, 46)];			      {				   E T2Y, T3V, T2Z, TV, TW;				   TV = ri[WS(is, 54)];				   TW = ri[WS(is, 22)];				   T2Y = ii[WS(is, 54)];				   T41 = T2R - T2S;				   T2T = T2R + T2S;				   T3V = TV - TW;				   TX = TV + TW;				   T2Z = ii[WS(is, 22)];				   {					E T2V, T2W, TS, TT, T3W;					TS = ri[WS(is, 6)];					TT = ri[WS(is, 38)];					T3W = T2Y - T2Z;					T30 = T2Y + T2Z;					T2V = ii[WS(is, 6)];					T3S = TS - TT;					TU = TS + TT;					T2W = ii[WS(is, 38)];					T3X = T3V - T3W;					T43 = T3V + T3W;					T2X = T2V + T2W;					T3T = T2V - T2W;				   }			      }			 }			 {			      E T44, T3U, T2U, T31;			      {				   E TaA, Tax, Tay, TR, TY, TaB;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -