⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 n1_11.c

📁 快速fft变换
💻 C
📖 第 1 页 / 共 2 页
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Sat Nov 15 20:36:52 EST 2008 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_notw -fma -reorder-insns -schedule-for-pipeline -compact -variables 4 -pipeline-latency 4 -n 11 -name n1_11 -include n.h *//* * This function contains 140 FP additions, 110 FP multiplications, * (or, 30 additions, 0 multiplications, 110 fused multiply/add), * 84 stack variables, 10 constants, and 44 memory accesses */#include "n.h"static void n1_11(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs){     DK(KP989821441, +0.989821441880932732376092037776718787376519372);     DK(KP959492973, +0.959492973614497389890368057066327699062454848);     DK(KP918985947, +0.918985947228994779780736114132655398124909697);     DK(KP876768831, +0.876768831002589333891339807079336796764054852);     DK(KP830830026, +0.830830026003772851058548298459246407048009821);     DK(KP778434453, +0.778434453334651800608337670740821884709317477);     DK(KP715370323, +0.715370323453429719112414662767260662417897278);     DK(KP634356270, +0.634356270682424498893150776899916060542806975);     DK(KP342584725, +0.342584725681637509502641509861112333758894680);     DK(KP521108558, +0.521108558113202722944698153526659300680427422);     INT i;     for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(is), MAKE_VOLATILE_STRIDE(os)) {	  E T1, TA, T1p, T1y, T19, T1d, T1a, T1e;	  {	       E T1f, T1u, T4, T1q, Tg, T1t, T7, T1s, Ta, Td, T1r, TP, T1X, T26, Ti;	       E TG, T1O, T1w, TY, T1F, T17, To, T1i, T1k, T1h, Tr, T1j, Tu, T1g, Tx;	       E T21, TU, TL, TC, T1S, T1J, T1m, T12, T1z, T1b;	       T1 = ri[0];	       T1f = ii[0];	       {		    E T1E, T16, Tb, Tc, Tv, Tw;		    {			 E T2, T3, Te, Tf;			 T2 = ri[WS(is, 1)];			 T3 = ri[WS(is, 10)];			 Te = ri[WS(is, 5)];			 Tf = ri[WS(is, 6)];			 {			      E T5, T6, T8, T9;			      T5 = ri[WS(is, 2)];			      T1u = T3 - T2;			      T4 = T2 + T3;			      T1q = Tf - Te;			      Tg = Te + Tf;			      T6 = ri[WS(is, 9)];			      T8 = ri[WS(is, 3)];			      T9 = ri[WS(is, 8)];			      Tb = ri[WS(is, 4)];			      T1t = T6 - T5;			      T7 = T5 + T6;			      T1s = T9 - T8;			      Ta = T8 + T9;			      Tc = ri[WS(is, 7)];			 }		    }		    {			 E T25, Th, T1W, TO;			 T25 = FMA(KP521108558, T1q, T1u);			 T1W = FMA(KP521108558, T1s, T1q);			 TO = FNMS(KP342584725, T4, Ta);			 Th = FNMS(KP342584725, Ta, T7);			 Td = Tb + Tc;			 T1r = Tc - Tb;			 TP = FNMS(KP634356270, TO, Tg);			 T1X = FNMS(KP715370323, T1W, T1t);			 T26 = FMA(KP715370323, T25, T1r);			 {			      E TF, T1N, T1v, TX;			      TF = FNMS(KP342584725, Td, T4);			      Ti = FNMS(KP634356270, Th, Td);			      T1N = FNMS(KP521108558, T1t, T1r);			      T1v = FNMS(KP521108558, T1u, T1t);			      TG = FNMS(KP634356270, TF, T7);			      TX = FNMS(KP342584725, T7, Tg);			      T1O = FMA(KP715370323, T1N, T1q);			      T1w = FNMS(KP715370323, T1v, T1s);			      T1E = FMA(KP521108558, T1r, T1s);			      TY = FNMS(KP634356270, TX, T4);			      T16 = FNMS(KP342584725, Tg, Td);			 }		    }		    {			 E Ty, Tz, Tm, Tn;			 Tm = ii[WS(is, 3)];			 T1F = FMA(KP715370323, T1E, T1u);			 Tn = ii[WS(is, 8)];			 T17 = FNMS(KP634356270, T16, Ta);			 Ty = ii[WS(is, 5)];			 Tz = ii[WS(is, 6)];			 To = Tm - Tn;			 T1i = Tm + Tn;			 {			      E Tp, Tq, Ts, Tt;			      Tp = ii[WS(is, 2)];			      T1k = Ty + Tz;			      TA = Ty - Tz;			      Tq = ii[WS(is, 9)];			      Ts = ii[WS(is, 4)];			      Tt = ii[WS(is, 7)];			      Tv = ii[WS(is, 1)];			      T1h = Tp + Tq;			      Tr = Tp - Tq;			      T1j = Ts + Tt;			      Tu = Ts - Tt;			      Tw = ii[WS(is, 10)];			 }		    }		    {			 E TB, T1R, T20, TK, TT, T1I, T1l;			 T20 = FNMS(KP342584725, T1i, T1h);			 TK = FMA(KP521108558, To, TA);			 TT = FNMS(KP521108558, Tr, Tu);			 T1g = Tv + Tw;			 Tx = Tv - Tw;			 T21 = FNMS(KP634356270, T20, T1j);			 TU = FMA(KP715370323, TT, TA);			 TL = FNMS(KP715370323, TK, Tr);			 TB = FMA(KP521108558, TA, Tx);			 T1R = FNMS(KP342584725, T1j, T1g);			 T1I = FNMS(KP342584725, T1g, T1i);			 T1l = FNMS(KP342584725, T1k, T1j);			 TC = FMA(KP715370323, TB, Tu);			 T1S = FNMS(KP634356270, T1R, T1h);			 T1J = FNMS(KP634356270, T1I, T1k);			 T1m = FNMS(KP634356270, T1l, T1i);			 T12 = FMA(KP521108558, Tu, To);			 T1z = FNMS(KP342584725, T1h, T1k);			 T1b = FNMS(KP521108558, Tx, Tr);		    }	       }	       {		    E T13, T1A, T1c, T1Z, T1V, TH, TM, Tj, TD;		    ro[0] = T1 + T4 + T7 + Ta + Td + Tg;		    T13 = FMA(KP715370323, T12, Tx);		    T1A = FNMS(KP634356270, T1z, T1g);		    T1c = FNMS(KP715370323, T1b, To);		    io[0] = T1f + T1g + T1h + T1i + T1j + T1k;		    Tj = FNMS(KP778434453, Ti, T4);		    TD = FMA(KP830830026, TC, Tr);		    {			 E TE, T23, T28, Tl, Tk, T22, T27;			 T22 = FNMS(KP778434453, T21, T1g);			 T27 = FMA(KP830830026, T26, T1t);			 Tk = FNMS(KP876768831, Tj, Tg);			 TE = FMA(KP918985947, TD, To);			 T23 = FNMS(KP876768831, T22, T1k);			 T28 = FMA(KP918985947, T27, T1s);			 Tl = FNMS(KP959492973, Tk, T1);			 {			      E T1U, T1T, T24, T1Y;			      T1T = FNMS(KP778434453, T1S, T1k);			      T24 = FNMS(KP959492973, T23, T1f);			      T1Y = FMA(KP830830026, T1X, T1u);			      ro[WS(os, 1)] = FMA(KP989821441, TE, Tl);			      ro[WS(os, 10)] = FNMS(KP989821441, TE, Tl);			      T1U = FNMS(KP876768831, T1T, T1i);			      io[WS(os, 10)] = FNMS(KP989821441, T28, T24);			      io[WS(os, 1)] = FMA(KP989821441, T28, T24);			      T1Z = FNMS(KP918985947, T1Y, T1r);			      T1V = FNMS(KP959492973, T1U, T1f);			 }			 TH = FNMS(KP778434453, TG, Tg);			 TM = FMA(KP830830026, TL, Tx);		    }		    {			 E T1M, TZ, T14, T1Q;			 {			      E TN, TR, TV, TJ, TI, TQ, T1P;			      TQ = FNMS(KP778434453, TP, Td);			      io[WS(os, 9)] = FMA(KP989821441, T1Z, T1V);			      io[WS(os, 2)] = FNMS(KP989821441, T1Z, T1V);			      TI = FNMS(KP876768831, TH, Ta);			      TN = FNMS(KP918985947, TM, Tu);			      TR = FNMS(KP876768831, TQ, T7);			      TV = FNMS(KP830830026, TU, To);			      TJ = FNMS(KP959492973, TI, T1);			      {				   E T1L, TS, TW, T1K;				   T1K = FNMS(KP778434453, T1J, T1j);				   TS = FNMS(KP959492973, TR, T1);				   TW = FNMS(KP918985947, TV, Tx);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -